已知向量
a
b
,
c
在正方形網(wǎng)格中的位置如圖所示.若
c
a
b
(λ,μ∈R),則λ+μ=
 
考點(diǎn):平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:
b
的起點(diǎn)為原點(diǎn),水平向右的方向?yàn)閤軸的正方向,建立直角坐標(biāo)系,可得
a
、
b
、
c
 的坐標(biāo).再根據(jù)
c
a
b
求得 λ和μ的值,可得λ+μ的值.
解答: 解:以
b
的起點(diǎn)為原點(diǎn),水平向右的方向?yàn)閤軸的正方向,建立直角坐標(biāo)系,
a
=(-1,1),
b
=(3,3),
c
=(-1,-3).
再根據(jù) 若
c
a
b
(λ,μ∈R),可得 (-1,-3)=(3μ-λ,λ+3μ),
∴3μ-λ=-1,λ+3μ=-3,解得 λ=-1,μ=-
2
3
,則λ+μ=-
5
3

故答案為:-
5
3
點(diǎn)評(píng):本題主要考查平面向量基本定理、兩個(gè)向量坐標(biāo)形式的運(yùn)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(1,2)是拋物線y2=2px上一點(diǎn),過點(diǎn)P作斜率分別為k,-
1
k
的直線l1,l2分別交拋物線于異于P的A,B兩點(diǎn),點(diǎn)Q(5,-2).
(1)當(dāng)l1,l2的斜率分別為2與-
1
2
時(shí),判斷直線AB是否經(jīng)過點(diǎn)Q;
(2)當(dāng)△PAB的面積等于32
2
時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一輛汽車在一條水平的公路上向正西方向行駛,在A處分別測(cè)得山頂上鐵塔的塔頂E的仰角為θ和山腳點(diǎn)O(點(diǎn)O是點(diǎn)E在公路所在平面上的射影)的方位角是西偏北φ,再行駛akm到達(dá)B處,測(cè)得山腳點(diǎn)O的方位角是西偏北β.請(qǐng)?jiān)O(shè)計(jì)一個(gè)方案,用測(cè)量的數(shù)據(jù)和有關(guān)公式寫出計(jì)算OE的步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R),設(shè)直線l1,l2分別是曲線y=f(x)的兩條不同的切線.
(1)若函數(shù)f(x)為奇函數(shù),且當(dāng)x=1時(shí)f(x)有極小值為-4.
(i)求a,b,c,d的值;
(ii)若直線l3亦與曲線y=f(x)相切,且三條不同的直線l1,l2,l3交于點(diǎn)G(m,4),求實(shí)數(shù)m的取值范圍;
(2)若直線l1∥l2,直線l1與曲線y=f(x)切于點(diǎn)B且交曲線y=f(x)于點(diǎn)D,直線l2和與曲線y=f(x)切于點(diǎn)C且交曲線y=f(x)于點(diǎn)A,記點(diǎn)A,B,C,D的橫坐標(biāo)分別為xA,xB,xC,xD,求(xA-xB):(xB-xC):(xC-xD)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某科考試中,從甲、乙兩個(gè)班級(jí)各隨機(jī)抽取10名同學(xué)的成績進(jìn)行統(tǒng)計(jì)分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.
(1)分別計(jì)算甲、乙兩班10名同學(xué)成績的平均數(shù),并估計(jì)哪班的成績更高;
(2)在所抽取的20人中的及格同學(xué)中,按分層抽樣的方法抽取5人,求甲班恰好抽到一名成績?yōu)?00分以上的同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長為2的正三角形,記△OAB位于直線x=t(0<t≤2)左側(cè)的圖形的面積為f(t),則
(Ⅰ)函數(shù)f(t)的解析式為
 
;
(Ⅱ)函數(shù)y=f(t)的圖象在點(diǎn)P(t0,f(t0))處的切線的斜率為
2
3
3
,則t0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AE切圓O于點(diǎn)E,AC交圓O于B,C兩點(diǎn),且與直徑DE交于點(diǎn)M,DM=2,CM=3,BM=6,則tanA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

球O為邊長為2的正方體ABCD-A1B1C1D1的內(nèi)切球,P為球O的球面上動(dòng)點(diǎn),M為B1C1中點(diǎn),DP⊥BM,則點(diǎn)P的軌跡周長為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案