【題目】變量滿足約束條件則目標(biāo)函數(shù)的取值范圍是___.

【答案】

【解析】

先作出不等式組對(duì)應(yīng)的可行域,再對(duì)x,y分類討論得到z的表達(dá)式,再利用數(shù)形結(jié)合分析得到每一種情況下z的取值范圍,最后綜合得解.

不等式組對(duì)應(yīng)的可行域如下圖所示,

當(dāng)x≥0,0≤y≤1時(shí),

此時(shí),直線的縱截距越大,z越大,縱截距越小,z越小.

當(dāng)直線經(jīng)過點(diǎn)B(0,1)時(shí),z最小=0+3-3=0,當(dāng)直線經(jīng)過點(diǎn)D時(shí),z最大=3+3-3=3,

所以此時(shí)z的范圍為[0,3]

當(dāng)x≥0,y>1時(shí),,

此時(shí),直線的縱截距越大,z越小,縱截距越小,z越大.

當(dāng)直線經(jīng)過點(diǎn)A(1,2)時(shí),z最小=2-6+3=-1,當(dāng)直線經(jīng)過點(diǎn)D時(shí),z最大=3-3+3=3,

所以此時(shí)z的范圍為[-1,3]

綜合得z的取值范圍為:

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論,其中正確的結(jié)論是( )

A.f(x)是偶函數(shù)B.f(x)在區(qū)間(,)單調(diào)遞增

C.f(x)4個(gè)零點(diǎn)D.f(x)的最大值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,,分別交軸于,兩點(diǎn),為坐標(biāo)原點(diǎn),則的面積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】說明下述命題是否可以看成判定定理或性質(zhì)定理,如果可以,說出其中涉及的充分條件或必要條件:

1)形如是非零常數(shù))的函數(shù)是二次函數(shù);

2)菱形的對(duì)角線互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論錯(cuò)誤的是(  )

A. 命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題

B. 命題p,,命題q,,則“”為真

C. “若,則”的逆命題為真命題

D. 命題P:“,使得”的否定為¬P:“,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若在定義域存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.

(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句中正確的個(gè)數(shù)是( )

,函數(shù)都不是偶函數(shù);

②命題“若,則”的否命題是真命題;

③若為真,則,非均為真;

④已知向量,則“”的充分不必要條件是“夾角為銳角”.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

如圖,四棱錐P -ABCD的底面是矩形,側(cè)面PAD是正三角形,

且側(cè)面PAD⊥底面ABCD,E 為側(cè)棱PD的中點(diǎn)。

(1)求證:PB//平面EAC;

(2)求證:AE⊥平面PCD;

(3)當(dāng)為何值時(shí),PB⊥AC ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】旅游業(yè)作為一個(gè)第三產(chǎn)業(yè),時(shí)間性和季節(jié)性非常強(qiáng),每年11月份來(lái)臨,全國(guó)各地就相繼進(jìn)入旅游淡季,很多旅游景區(qū)就變得門庭冷落.為改變這種局面,某旅游公司借助一自媒體平臺(tái)做宣傳推廣,銷售特惠旅游產(chǎn)品.該公司統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)產(chǎn)品的銷售數(shù)量,用表示活動(dòng)推出的天數(shù),用表示產(chǎn)品的銷售數(shù)量(單位:百件),統(tǒng)計(jì)數(shù)據(jù)如下表所示.

根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點(diǎn)圖,根據(jù)已有的函數(shù)知識(shí),發(fā)現(xiàn)樣本點(diǎn)分布在某一條指數(shù)型函數(shù)的周圍.為求出該回歸方程,相關(guān)人員確定的研究方案是:先用其中5個(gè)數(shù)據(jù)建立關(guān)于的回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).試回答下列問題:

(1)現(xiàn)令,若選取的是這5組數(shù)據(jù),已知,,請(qǐng)求出關(guān)于的線性回歸方程(結(jié)果保留一位有效數(shù)字);

(2)若由回歸方程得到的估計(jì)數(shù)據(jù)與選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過,則認(rèn)為得到的回歸方程是可靠的,試問(1)中所得的回歸方程是否可靠?

參考公式及數(shù)據(jù):對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)分別為;

查看答案和解析>>

同步練習(xí)冊(cè)答案