【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且b2+c2﹣a2=bc.
(1)求A;
(2)若a= ,sinBsinC=sin2A,求△ABC的周長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,且其6個(gè)頂點(diǎn)都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓C1:x2+y2=m與圓C2:x2+y2﹣6x﹣8y+16=0相外切.
(1)求m的值;
(2)若圓C1與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,P為第三象限內(nèi)一點(diǎn)且在圓C1上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長為2的等邊三角形, .
(1)求證:平面PAM⊥平面PDM;
(2)若點(diǎn)E為PC中點(diǎn),求二面角P﹣MD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某矩形花壇ABCD長AB=3m,寬AD=2m,現(xiàn)將此花壇在原有基礎(chǔ)上有拓展成三角形區(qū)域,AB、AD分別延長至E、F并使E、C、F三點(diǎn)共線.
(1)要使三角形AEF的面積大于16平方米,則AF的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)AF的長度是多少時(shí),三角形AEF的面積最?并求出最小面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式x2﹣x﹣m+1>0.
(1)當(dāng)m=3時(shí)解此不等式;
(2)若對(duì)于任意的實(shí)數(shù)x,此不等式恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com