精英家教網 > 高中數學 > 題目詳情
已知定義在R上的函f(x)的圖象關于點(-
3
4
,0
)對稱,且滿足f(x)=-f(x+
3
2
),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( 。
A、1B、-1C、2D、-2
分析:根據題意可推出f(x)=f(x+3)且f(x)=f(-x),得到f(-1)+f(0)+f(1)=0,
故可得 f(1)+f(2)+f(3)+…+f (2009 )=669×0+f(1)+f(2)=f(1)+f(-1).
解答:解:定義在R上的函f(x)的圖象關于點(-
3
4
,0
)對稱,∴f(x)=-f(-x-
3
2
 ),
又f(x)=-f(x+
3
2
),∴f(x)=f(x+3)且f(x)=f(-x),
∴f(-1)=f(1)=-1,∴f(-1)+f(0)+f(1)=0.
又 2009=669×3+2,故 f(1)+f(2)+f(3)+…+f (2009 )=669×0+f(1)+f(2)=
f(1)+f(-1)=-2,
故選  D.
點評:本題考查函數的對稱性、周期性,及函數值,推出f(x)=f(x+3)且f(x)=f(-x),是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)問:是否存在實數a,b(a≠b),使f(x)在x∈[a,b]時,函數值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年浙江省杭州高級中學高三第二次月考數學試卷(理科)(解析版) 題型:選擇題

已知定義在R上的函f(x)的圖象關于點()對稱,且滿足f(x)=-f(x+),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( )
A.1
B.-1
C.2
D.-2

查看答案和解析>>

科目:高中數學 來源:2011年四川省宜賓市南溪一中高考數學一診模擬試卷1(文科)(解析版) 題型:選擇題

已知定義在R上的函f(x)的圖象關于點()對稱,且滿足f(x)=-f(x+),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( )
A.1
B.-1
C.2
D.-2

查看答案和解析>>

同步練習冊答案