【題目】為加快新能源汽車產業(yè)發(fā)展,推進節(jié)能減排,某年國家對消費者購買新能源汽車給予補貼,其中對純電動乘用車補貼標準如下表:
新能源汽車補貼標準 | |||
車輛類型 | 續(xù)駛里程 | ||
純電動乘用車 | 3.5萬元/輛 | 5萬元/輛 | 6萬元/輛 |
某校研究學習小組從汽車市場上隨機選取了輛純電動乘用車,根據其續(xù)駛里程(單次充電后能行駛的最大里程)作出了如下的頻率與頻數的統(tǒng)計表:
分組 | 頻數 | 頻率 |
2 | 0.2 | |
5 | ||
合計 | 1 |
(1)若從這輛純電動乘用車中任選2輛,求選到的2輛車續(xù)駛里程都不低于150km的概率.
(2)若以頻率作為概率,設為購買一輛純電動乘用車獲得的補貼,求的分布列和數學期望.
科目:高中數學 來源: 題型:
【題目】為培養(yǎng)學生對傳統(tǒng)文化的興趣,某校從理科甲班抽取60人,從文科乙班抽取50人參加傳統(tǒng)文化知識競賽.
(1)根據題目條件完成下邊列聯表,并據此判斷是否有99%的把握認為學生的傳統(tǒng)文化知識競賽成績優(yōu)秀與文理分科有關.
優(yōu)秀人數 | 非優(yōu)秀人數 | 總計 | |
甲班 | |||
乙班 | 20 | ||
總計 | 60 |
(2)現已知,,三人獲得優(yōu)秀的概率分別為,,,設隨機變量表示,,三人中獲得優(yōu)秀的人數,求的分布列及期望.
附:,.
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】祖暅是我國南北朝時期杰出的數學家和天文學家祖沖之的兒子,他提出了一條原理:“冪勢既同冪,則積不容異”.這里的“冪”指水平截面的面積,“勢”指高.這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等.一般大型熱電廠的冷卻塔大都采用雙曲線型.設某雙曲線型冷卻塔是曲線 與直線, 和所圍成的平面圖形繞軸旋轉一周所得,如圖所示.試應用祖暅原理類比求球體體積公式的方法,求出此冷卻塔的體積為_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=Asin(ωx+φ)(A≠0,ω>0,<φ<)的圖象關于直線對稱,它的最小正周期為π,則( )
A. f(x)的圖象過點(0,) B. f(x)在上是減函數
C. f(x)的一個對稱中心是 D. f(x)的一個對稱中心是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在《周髀算經》中,把圓及其內接正方形稱為圓方圖,把正方形及其內切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設計和建筑領域有著廣泛的應用.山西應縣木塔是我國現存最古老、最高大的純木結構樓閣式建筑,它的正面圖如下圖所示.以該木塔底層的邊作正方形,以點或點為圓心,以這個正方形的對角線為半徑作圓,會發(fā)現塔的高度正好跟此對角線長度相等.以該木塔底層的邊作正方形,會發(fā)現該正方形與其內切圓的一個切點正好位于塔身和塔頂的分界線上.經測量發(fā)現,木塔底層的邊不少于47.5米,塔頂到點的距離不超過19.9米,則該木塔的高度可能是(參考數據:)( )
A.66.1米B.67.3米C.68.5米D.69.0米
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果存在常數,使得數列滿足:若是數列中的一項,則也是數列 中的一項,稱數列為“兌換數列”,常數是它的“兌換系數”.
(1)若數列:是“兌換系數”為的“兌換數列”,求和的值;
(2)已知有窮等差數列的項數是,所有項之和是,求證:數列是“兌換數列”,并用和表示它的“兌換系數”;
(3)對于一個不小于3項,且各項皆為正整數的遞增數列,是否有可能它既是等比數列,又是“兌換數列”?給出你的結論,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com