【題目】若實(shí)數(shù)滿(mǎn)足,①的最大值為________;②若恒成立,則實(shí)數(shù)的取值范圍是________.
【答案】4
【解析】
(1)首先畫(huà)出可行域,和的圖象,通過(guò)平移直線,確定的最大值;(2)當(dāng)時(shí),恒成立,當(dāng)時(shí),恒成立,即,轉(zhuǎn)化為斜率關(guān)系,利用可行域求不等式兩邊斜率的最值.
首先畫(huà)出可行域,令,畫(huà)出初始目標(biāo)函數(shù)的圖象,
令,得,當(dāng)目標(biāo)函數(shù)的橫截距最大時(shí),也取得最大值,
所以平移至點(diǎn)處,函數(shù)取得最大值,
,解得: ,即,代入目標(biāo)函數(shù);
由可行域可知,
當(dāng)時(shí),,此時(shí)恒成立,
當(dāng)時(shí),不等式整理為:恒成立,
即
設(shè),表示可行域內(nèi)的點(diǎn)與定點(diǎn)連線的斜率,由圖象可知當(dāng)定點(diǎn)與點(diǎn)連結(jié)時(shí),斜率取得最小值
設(shè),表示可行域內(nèi)的點(diǎn)與定點(diǎn)連線的斜率,由圖象可知當(dāng)與定點(diǎn)連結(jié)時(shí),斜率取得最大值
綜上可知:
故答案為:4;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(﹣1,)在橢圓C上,且|PF2|.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F2的直線l與橢圓C交于A,B兩點(diǎn),M為線段AB的中點(diǎn),若橢圓C上存在點(diǎn)N,滿(mǎn)足3(O為坐標(biāo)原點(diǎn)),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)設(shè)x≥1,y≥1,證明x+yxy;
(Ⅱ)1≤a≤b≤c,證明logab+logbc+logca≤logba+logcb+logac.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,為其焦點(diǎn),為其準(zhǔn)線,過(guò)任作一條直線交拋物線于兩點(diǎn),、分別為、在上的射影,為的中點(diǎn),給出下列命題:
(1);(2);(3);
(4)與的交點(diǎn)的軸上;(5)與交于原點(diǎn).
其中真命題的序號(hào)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且橢圓的右頂點(diǎn)到直線的距離為3.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),求的面積的最大值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,比賽要求雙方下滿(mǎn)五盤(pán)棋,開(kāi)始時(shí)甲每盤(pán)棋贏的概率為,由于心態(tài)不穩(wěn),甲一旦輸一盤(pán)棋,他隨后每盤(pán)棋贏的概率就變?yōu)?/span>.假設(shè)比賽沒(méi)有和棋,且已知前兩盤(pán)棋都是甲贏.
(Ⅰ)求第四盤(pán)棋甲贏的概率;
(Ⅱ)求比賽結(jié)束時(shí),甲恰好贏三盤(pán)棋的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若點(diǎn)在直線上,且,求直線的斜率;
(2)若,求曲線上的點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正四棱柱中,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)若為上的動(dòng)點(diǎn),使直線與平面所成角的正弦值是,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com