設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,過(guò)原點(diǎn)O斜率為1的直線(xiàn)l與橢圓C相交于M,N兩點(diǎn),橢圓右焦點(diǎn)F到直線(xiàn)l的距離為
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓上異于M,N外的一點(diǎn),當(dāng)直線(xiàn)PM,PN的斜率存在且不為零時(shí),記直線(xiàn)PM的斜率為k1,直線(xiàn)PN的斜率為k2,試探究k1•k2是否為定值?若是,求出定值;若不是,說(shuō)明理由.
(I)設(shè)橢圓的焦距為2c(c>0),F(xiàn)(c,0),直線(xiàn)l:x-y=0,F(xiàn)到l的距離為
|c|
2
=
2
,解得c=2.又∵e=
c
a
=
2
2
,∴a=2
2
,∴b=2.
∴橢圓C的方程為
x2
8
+
y2
4
=1
.(6分)
(Ⅱ)由
x2
8
+
y2
4
=1
y=x
解得x=y=
2
6
3
,或x=y=-
2
6
3

不妨設(shè)M(
2
6
3
,
2
6
3
), N(-
2
6
3
,-
2
6
3
)
,P(x,y),
kPMkPN=
y-
2
6
3
x-
2
6
3
y+
2
6
3
x+
2
6
3
=
y2-
8
3
x2-
8
3

x2
8
+
y2
4
=1
,即x2=8-2y2,代入化簡(jiǎn)得k1k2=kPMkPN=-
1
2
為定值.(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點(diǎn)為F,它與直線(xiàn)l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線(xiàn)的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱(chēng),若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點(diǎn)分別為F1F2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線(xiàn)交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0

(1)若過(guò)A.Q.F2三點(diǎn)的圓恰好與直線(xiàn)l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過(guò)右焦點(diǎn)F2作斜率為k的直線(xiàn)l與橢圓C交于M.N兩點(diǎn).試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過(guò)定點(diǎn)A(1,2),則橢圓的中心到準(zhǔn)線(xiàn)的距離的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若P 是橢圓上的一點(diǎn),|
PF1
|+|
PF2
|=4
,離心率e=
3
2

(1)求橢圓C的方程;
(2)若P 是第一象限內(nèi)該橢圓上的一點(diǎn),
PF1
PF2
=-
5
4
,求點(diǎn)P的坐標(biāo);
(3)設(shè)過(guò)定點(diǎn)P(0,2)的直線(xiàn)與橢圓交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線(xiàn)l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e=
2
2
,以F1為圓心,|F1F2|為半徑的圓與直線(xiàn)x-
3
y-3=0
相切.
(I)求橢圓C的方程;
(II)直線(xiàn)y=x交橢圓C于A(yíng)、B兩點(diǎn),D為橢圓上異于A(yíng)、B的點(diǎn),求△ABD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案