【題目】設函數(shù),若存在(其中)
(1)求實數(shù)的取值范圍,
(2)證明:.
【答案】(1)(2)詳見解析
【解析】
(1)先利用導數(shù)的符號討論函數(shù)的單調性,根據(jù)題設條件可得函數(shù)的最大值為正,再分和兩種情況討論,前者無兩個不同的零點,后者可利用零點存在定理證明函數(shù)有兩個零點.
(2)根據(jù)(1)可把要證明的不等式轉化為證明,根據(jù)函數(shù)的單調性及可把前者轉為, 構建新函數(shù)可證明該不等式.
解:(1)令,則
時,時;當,,
在遞增,遞減,且,
由題設,有兩個不同的零點,故即.
若,則當時,,故在無零點;
而在遞增,故在上至多有一個零點,故不符合;
若,則,,
考慮,因為,故,
為上的增函數(shù),故即,
因在遞增,遞減,且,結合零點存在定理可知有兩個不同的零點,故.
(2)由(1)知:,
要證:成立,只需證:,
在遞增,故只需證:
即證.
只需證:,即證:.
令,
在上單調遞減,.證畢
科目:高中數(shù)學 來源: 題型:
【題目】某超市國慶大酬賓,購物滿100元可參加一次游戲抽獎活動,游戲抽獎規(guī)則如下:顧客將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器正上方的入口處,小球自由落下過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,落入A袋得獎金4元,落入B袋得獎金8元,已知小球每次遇到黑色障礙物時,向左向右下落的概率都為.已知李女士當天在該超市購物消費128元,按照活動要求,李女士的活動獎金期望值為_____元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①命題“若,則”的否命題為“若,則”;
②“”是“”的必要不充分條件;
③命題“,使得”的否定是:“,均有”;
④命題“若,則”的逆否命題為真命題
其中所有正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了適應新高考改革,某校組織了一次新高考質量測評(總分100分),在成績統(tǒng)計分析中,抽取12名學生的成績以莖葉圖形式表示如圖,學校規(guī)定測試成績低于87分的為“未達標”,分數(shù)不低于87分的為“達標”.
(1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);
(2)在這12名學生中從測試成績介于80~90之間的學生中任選2人,求至少有1人“達標”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:①越小,X與Y有關聯(lián)的可信度越小;②若兩個隨機變量的線性相關性越強,則相關系數(shù)r的值越接近于1;③“若,則類比推出,“若,則;④命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯誤的原因是使用了“三段論”,推理形式錯誤.其中說法正確的有( )個
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中放有大小和形狀相同而顏色互不相同的小球若干個, 其中標號為0的小球1個, 標號為1的小球1個, 標號為2的小球2個, 從袋子中不放回地隨機抽取2個小球, 記第一次取出的小球標號為,第二次取出的小球標號為.
(1) 記事件表示“”, 求事件的概率;
(2) 在區(qū)間內任取2個實數(shù), 記的最大值為,求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線:,(為參數(shù)),將曲線上的所有點的橫坐標縮短為原來的,縱坐標縮短為原來的后得到曲線,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為。
(1)求曲線的極坐標方程和直線l的直角坐標方程;
(2)設直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com