【題目】已知函數(shù)有如下性質(zhì):該函數(shù)在上是減函數(shù),在上是增函數(shù).

1)已知,利用上述性質(zhì),求函數(shù)的單調(diào)區(qū)間和值域;

2)對(duì)于(1)中的函數(shù)和函數(shù),若對(duì)任意,總存在,使得成立,求實(shí)數(shù)的取值范圍

【答案】(1)減區(qū)間為增區(qū)間為,值域;(2).

【解析】試題分析:(1設(shè) 構(gòu)造函數(shù),利用該函數(shù)在 上遞增,在上遞減,結(jié)合復(fù)合函數(shù)的單調(diào)性,可得函數(shù)的單調(diào)區(qū)間和值域;2若對(duì)任意,總存在,使得成立,等價(jià)于的值域是函數(shù)的值域的子集,分別求出的值域與函數(shù)的值域,利用包含關(guān)系,列不等式組求解即可.

試題解析:(1)

設(shè)u=x+1,x∈[0,3],1≤u≤4,

則, u[1,4]

由已知性質(zhì)得,當(dāng)1≤u≤2,即0≤x≤1時(shí),f(x)單調(diào)遞減;

所以減區(qū)間為[0,1];當(dāng)2≤u≤4,即1≤x≤3時(shí),f(x)單調(diào)遞增;

所以增區(qū)間為[1,3] ;由f(1)=4,f(0)=f(3)=5,得f(x)的值域?yàn)閇4,5].

(2)g(x)=2x+a為增函數(shù),故g(x)∈[a,a+6],x∈[0,3].由題意,f(x)的值域是g(x)的值域的子集,∴ , ∴.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)f(x)的最小值為g(a),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4

(1)求橢圓C的方程;
(2)設(shè)F1 , F2分別為橢圓C的左,右焦點(diǎn),過F2作直線l(與x軸不重合)交于橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為E,記直線F1E的斜率為k,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的一系列對(duì)應(yīng)值如表:

(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;

(2)根據(jù)(1)的結(jié)果:

當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍;

,是銳角三角形的兩個(gè)內(nèi)角,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)設(shè)直線 與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ) 在(Ⅱ)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin(x+)。

(1)若點(diǎn)P(1,-)在角的終邊上,求:cos和f(-)的值;

(2)若x [ ],求f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形中隨機(jī)投擲10 000個(gè)點(diǎn),則落入陰影部分(曲線C為正態(tài)分布N(﹣1,1)的密度曲線)的點(diǎn)的個(gè)數(shù)的估計(jì)值為( ) 附:若X~N(μ,σ2),則P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

A.1 193
B.1 359
C.2 718
D.3 413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“菊花”型煙花是最壯觀的煙花之一,制造時(shí)一般是期望在它達(dá)到最高點(diǎn)時(shí)爆裂.通過研究,發(fā)現(xiàn)該型煙花爆裂時(shí)距地面的高度(單位:米)與時(shí)間(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如表:

時(shí)間

1

高度

(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述該型煙花爆裂時(shí)距地面的高度與時(shí)間的變化關(guān)系: , , ,確定此函數(shù)解析式并簡(jiǎn)單說明理由;

(2)利用你選取的函數(shù),判斷煙花爆裂的最佳時(shí)刻,并求此時(shí)煙花距地面的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)y=sin x(x∈R)的圖象上所有點(diǎn)向左平移 個(gè)單位長(zhǎng)度,再把所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到圖象的函數(shù)解析式為( )
A.y=sin
B.y=sin
C.y=sin
D.y=sin

查看答案和解析>>

同步練習(xí)冊(cè)答案