(21分).如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明 PA//平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C-PB-D的大。
解:(1)證明:連結(jié)AC,AC交BD于O.連結(jié)EO.
∵ 底面ABCD是正方形,∴ 點O是AC的中點.在△PAC中,EO是中位線,∴ PA//EO.而平面EDB,且平面EDB,所以,PA//平面EDB.
(2)證明:∵ PD⊥底面ABCD,且底面ABCD, ∴ PD⊥DC.
∵ 底面ABCD是正方形,有DC⊥BC, ∴ BC⊥平面PDC. 而平面PDC,∴ BC⊥DE.又∵PD=DC,E是PC的中點,∴ DE⊥PC. ∴ DE⊥平面PBC.
而平面PBC,∴ DE⊥PB.又EF⊥PB,且,所以PB⊥平面EFD.
(3)解:由(2))知,PB⊥DF,故∠EFD是二面角C-PB-D的平面角,由(2)知,DE⊥EF,PD⊥DB.
設(shè)正方形ABCD的邊長為a,則
在中,.在中,.所以,二面角C-PB-D的大小為60°.
【解析】略
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
PE |
1 |
3 |
PD |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
PM |
PB |
1 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com