△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量,,且
(I)求角A的大;
(II)若且△ABC的面積為,求b十c的值.
【答案】分析:(1)由,結(jié)合向量平行的坐標(biāo)表示可得關(guān)于A的三角關(guān)系式,然后利用二倍角公式對(duì)已知式子進(jìn)行化簡(jiǎn)可求tanA,進(jìn)而可求A
(2)由三角形的面積公式S=可求bc,然后由余弦定理可得,可求b+c
解答:解:(1)∵
…(2分)
…(4分)
又A∈(0,π)
…(6分)
(2)∵…(8分)
∴bc=6…(9分)
由余弦定理得:…(10分)
⇒(b+c)2=7+3bc=25…(11分)
∴b+c=5…(12分)
點(diǎn)評(píng):本題主要考查了向量平行的坐標(biāo)表示的應(yīng)用、二倍角公式及同角基本關(guān)系的應(yīng)用,余弦定理及三角形的面積公式在求解三角形中的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量
m
=(2sinB,
3
)
n
=(2cos2
B
2
-1,cos2B)
,且
m
n

(1)求銳角B的大;
(2)如果b=2,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量
m
=(2sinB,-
3
),
n
=(cos2B,2cos2
B
2
-1)且
m
n

(Ⅰ)求銳角B的大小;
(Ⅱ)如果b=2,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知銳角△ABC中內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且sin2A+sin2B=sin2C+sinAsinB.
(1)求角C的值;
(2)設(shè)函數(shù)f(x)=sin(ωx-
π6
)-cosωx(ω>0)
,且f(x)圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知銳角△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量
m
=(2sinB,
3
),
n
=(2cos2
B
2
-1,cos2B),且
m
n

(1)求B的大。
(2)若sinA,sinB,sinC成等差數(shù)列,且
BA
•(
AC
-
AB
)=18,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•淮安模擬)已知銳角△ABC中內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=6,向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t

(1)求C的大。
(2)若sinA=
1
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案