【題目】已知函數(shù) 的部分圖象如圖所示,分別是圖象的最低點(diǎn)和最高點(diǎn),.

(1)求函數(shù)的解析式;

(2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,求函數(shù)的單調(diào)遞增區(qū)間.

【答案】(1);(2)

【解析】分析:(1)由可求,再由,,可求得A,繼而可求,于是可求函數(shù)的解析式;

(2)通過平移變換可得,則,從而即可求得函數(shù)的單調(diào)遞增區(qū)間.

詳解:(1)由圖象可得: ,所以的周期.

于是,,

,,

又將代入得,,

所以,

得,,

.

(2)將函數(shù)的圖象沿軸方向向左平移個(gè)單位長(zhǎng)度,

得到的圖象對(duì)應(yīng)的解析式為:

再把所得圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的倍(縱坐標(biāo)不變),得到的圖象對(duì)應(yīng)的解析式為,

,得,,

∴函數(shù)的單調(diào)遞增區(qū)間為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn),點(diǎn)在以、為焦點(diǎn)的橢圓上,且、構(gòu)成等差數(shù)列.

求橢圓C的方程;

設(shè)是過原點(diǎn)的直線,是與n垂直相交于點(diǎn),與橢圓相交于兩點(diǎn)的直線,,是否存在上述直線使成立?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將五個(gè)1,五個(gè)2,五個(gè)3,五個(gè)4,五個(gè)5共25個(gè)數(shù)填入一個(gè)5行5列的表格內(nèi)(每格填入一個(gè)數(shù)),使得同一行中任何兩數(shù)之差的絕對(duì)值不超過2,考查每行中五個(gè)數(shù)之和,記這五個(gè)和的最小值為,則的最大值為( )

A. B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為直線上的動(dòng)點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則四邊形為圓心的面積的最小值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過點(diǎn)作直線的垂線,交直線于點(diǎn).記過、、三點(diǎn)的圓為圓.

(1)求圓的方程;

(2)求過點(diǎn)與圓相交所得弦長(zhǎng)為8的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】具有性質(zhì):的函數(shù),我們稱為滿足倒負(fù)變換的函數(shù)。給出下列函數(shù):

其中滿足倒負(fù)變換的函數(shù)是()

A. ①② B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是實(shí)數(shù),

(1)證明:f(x)是增函數(shù);

(2)試確定的值,使f(x)為奇函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若時(shí),有成立.

(1)判斷上的單調(diào)性,并用定義證明;

(2)解不等式;

(3)若對(duì)所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于 兩點(diǎn),且.

1求該拋物線的方程;

2過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn).設(shè)線段的中點(diǎn)分別為,求證:直線恒過一個(gè)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案