【題目】已知函數(shù)f(x)=1﹣
(1)求函數(shù)f(x)的定義域和值域;
(2)試判斷函數(shù)f(x)的奇偶性.
【答案】
(1)解:要使 f(x) 有意義,只要使2x+1≠0.由于對任意的 x都成立,即函數(shù) 的定義域為 R.
設y=f(x)=1﹣ ,2x>0,2x+1>1,0< <2,所以﹣1<1﹣ <1,所以函數(shù)的值域為(﹣1,1)
(2)解:對任意的 x∈R,則有﹣x∈R,.
∵f(﹣x)=1﹣ =1﹣ = =﹣f(x),
∴f(x) 為奇函數(shù)
【解析】(1)求使解析式有意義的x范圍;并結合指數(shù)函數(shù)的值域求f(x)的值域.(2)利用奇偶函數(shù)的定義判斷奇偶性.
【考點精析】關于本題考查的函數(shù)的定義域及其求法和函數(shù)的值域,需要了解求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓x2+y2﹣2x﹣3=0的圓心坐標及半徑分別為( )
A.(﹣1,0)與
B.(1,0)與
C.(1,0)與2
D.(﹣1,0)與2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司制定了一個激勵銷售人員的獎勵方案:當銷售利潤不超過15萬元時,按銷售利潤的10%進行獎勵;當銷售利潤超過15萬元時,若超過部分為A萬元,則超出部分按2log5(A+1)進行獎勵,沒超出部分仍按銷售利潤的10%進行獎勵.記獎金總額為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出該公司激勵銷售人員的獎勵方案的函數(shù)表達式;
(2)如果業(yè)務員老張獲得5.5萬元的獎金,那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex-a+lnx。
(1)若a=1,求證:當x>1時,f(x)>2x-1
(2)若存在x0≥e,使f(x)<2lnx0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,關于原點對稱,恰為拋物線: 的焦點,點在拋物線上,且線段的中點恰在軸上,的面積為8.若拋物線上存在點使得,則實數(shù)的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠共有10臺機器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術水平等因素限制,會產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗知道,若每臺機器產(chǎn)生的次品數(shù)P(萬件)與每臺機器的日產(chǎn)量x(萬件)(4≤x≤12)之間滿足關系:P=0.1x2﹣3.2lnx+3,已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每產(chǎn)生1萬件裝次品將虧損1萬元.(利潤=盈利﹣虧損) (I)試將該工廠每天生產(chǎn)這種元件所獲得的利潤y(萬元)表示為x的函數(shù);
(II)當每臺機器的日產(chǎn)量x(萬件)寫為多少時所獲得的利潤最大,最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com