如圖,ADBC的位置關(guān)系是    ,根據(jù)是    ____________

 

答案:異面;判定定理
提示:

根據(jù)異面直線的判定定理可得.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
2

(1)求異面直線PC與AD所成角的大。
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
(說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

查看答案和解析>>

同步練習(xí)冊答案