數(shù)列{an}:an=n2+λn(n∈N*)是一個單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍是
A.(-3,+∞)
B.
C.(-2,+∞)
D.(0,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省金華一中2012屆高三10月月考數(shù)學(xué)文科試題 題型:022
數(shù)列{an}滿足an=3an-1+3n-1(n≥2),又a1=5,則使為等差數(shù)列的實(shí)數(shù)λ=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=+++…+,求數(shù)列{bn}的通項(xiàng)公式;
(3)令cn=(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇五校高三下學(xué)期期初教學(xué)質(zhì)量調(diào)研數(shù)學(xué)卷(解析版) 題型:解答題
設(shè)非常數(shù)數(shù)列{an}滿足an+2=,n∈N*,其中常數(shù)α,β均為非零實(shí)數(shù),且α+β≠0.
(1)證明:數(shù)列{an}為等差數(shù)列的充要條件是α+2β=0;
(2)已知α=1,β=, a1=1,a2=,求證:數(shù)列{| an+1-an-1|} (n∈N*,n≥2)與數(shù)列{n+} (n∈N*)中沒有相同數(shù)值的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省高三第五次模擬理數(shù)試卷(解析版) 題型:選擇題
已知函數(shù)若數(shù)列{an}滿足an=(n∈N+)且{an}是遞減數(shù)列,則實(shí)數(shù)a的取值范圍是( )
A.(,1) B.(,) C.(,) D.(,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一期中考試文科數(shù)學(xué)試卷A卷(解析版) 題型:解答題
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com