10.設(shè)${({2-x})^6}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,則|a1|+|a2|+…+|a6|的值是(  )
A.729B.665C.728D.636

分析 由二項(xiàng)式定理知a0,a2,a4,a6均為正數(shù),a1,a3,a5均為負(fù)數(shù),
|a0|+|a1|+|a2|+…+|a6|=a0-a1+a2-a3+a4-a5+a6,
利用賦值法把x=-1,x=0分別代入已知式子計(jì)算即可.

解答 解:∵(2-x)6=a0+a1x+a2x+…+a6x,
由二項(xiàng)式定理可知a0,a2,a4,a6均為正數(shù),a1,a3,a5均為負(fù)數(shù),
令x=-1可得:
∴|a0|+|a1|+|a2|+…+|a6|=a0-a1+a2-a3+a4-a5+a6=(2+1)6=729,
x=0時(shí),a0=26=64;
∴|a1|+|a2|+…+|a6|=729-64=665.
故選:B.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理和賦值法的應(yīng)用問(wèn)題,屬基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求值:(1)${(3\sqrt{3})^{\frac{2}{3}}}-ln{e^2}$+log318-log36+$tan\frac{7π}{6}•cos\frac{5π}{6}$
(2)A是△ABC的一個(gè)內(nèi)角,$sinA•cosA=-\frac{1}{8}$,求cosA-sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)f(x)+g(x)=${∫}_{x}^{x+1}$2tdt,x∈R,若函數(shù)f(x)為奇函數(shù),則g(x)的解析式可以為( 。
A.x3B.cosxC.1+xD.xex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在曲線y=x2+1的圖象上取一點(diǎn)(1,2)及附近一點(diǎn)(1+△x,2+△y),則$\underset{lim}{△x→0}$$\frac{△y}{△x}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示,在三棱錐P-ABC的六條棱所在的直線中,異面直線共有( 。
A.2對(duì)B.3對(duì)C.4對(duì)D.6對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,棱長(zhǎng)為3的正方體的頂點(diǎn)A在平面α上,三條棱AB、AC、AD都在平面α的同側(cè).若頂點(diǎn)B,C到平面α的距離分別為1,$\sqrt{2}$.建立如圖所示的空間直角坐標(biāo)系,設(shè)平面α的一個(gè)法向量為(x1,y1,z1),頂點(diǎn)D到平面α的距離為h.若x1=1,則y1+z1+h=$\sqrt{2}$+2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,已知球的半徑為3,球內(nèi)接圓錐的高為h(h>3),體積為V,
(1)寫(xiě)出以h表示V的函數(shù)關(guān)系式V(h);
(2)當(dāng)h為何值時(shí),V(h)有最大值,并求出該最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:0.125${\;}^{-\frac{1}{3}}$×$1{6}^{\frac{3}{4}}$-3${\;}^{lo{{g}_{\sqrt{3}}}^{4}}$+log364$•lo{g}_{\frac{1}{2}}$9+log89•log964.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.圓柱的側(cè)面展開(kāi)圖是長(zhǎng)12cm,寬8cm的矩形,則這個(gè)圓柱的體積為$\frac{288}{π}$或$\frac{192}{π}$ cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案