【題目】設有以下四個命題:
①底面是平行四邊形的四棱柱是平行六面體;
②底面是矩形的平行六面體是長方體;
③直四棱柱是直平行六面體;
④棱臺的相對側棱延長后必交于一點.
其中正確命題的序號是______.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為5的正方形與矩形所在平面互相垂直,分別為的中點,.
(1)求證:平面;
(2)求證:平面;
(3)在線段上是否存在一點,使得?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從A,B,C三個區(qū)中抽取7個工廠進行調查,已知A,B,C區(qū)中分別有18,27,18個工廠
(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);
(Ⅱ)若從抽取的7個工廠中隨機抽取2個進行調查結果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知圓的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點,.
(1)寫出圓的直角坐標方程,并求圓心的坐標與半徑;
(2)若弦長,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是(為參數(shù)).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)求曲線上任意一點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù):①,②,③,判斷如下三個命題的真假:
命題甲: 是偶函數(shù);
命題乙: 在上是減函數(shù),在上是增函數(shù);
命題丙: 在是增函數(shù).
則能使命題甲、乙、丙均為真的所有函數(shù)的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)滿足,定義數(shù)列, , ,數(shù)列的前項和為, ,且.
(1) 求數(shù)列、的通項公式;
(2)令,求的前項和;
(3)數(shù)列中是否存在三項使成等差數(shù)列,若存在,求出的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為實數(shù)且.
(1)設函數(shù).當時,在其定義域內為單調增函數(shù),求的取值范圍;
(2)設函數(shù).當時,在區(qū)間(其中為自然對數(shù)的底數(shù))上是否存在實數(shù),使得成立,若存在,求實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com