20.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時(shí),過原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1,l2,已知兩切線的斜率互為倒數(shù),證明:$\frac{e-1}{e}$<a<$\frac{{{e^2}-1}}{e}$;
(3)設(shè)h(x)=f(x+1)+g(x),當(dāng)x≥0,h(x)≥1時(shí),求實(shí)數(shù)a的取值范圍.

分析 (1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,注意對(duì)參數(shù)a的分類討論;
(2)背景為指數(shù)函數(shù)y=ex與對(duì)數(shù)函數(shù)y=lnx關(guān)于直線y=x對(duì)稱的特征,得到過原點(diǎn)的切線也關(guān)于直線y=x對(duì)稱,主要考查利用導(dǎo)函數(shù)研究曲線的切線及結(jié)合方程有解零點(diǎn)存在定理的應(yīng)該用求參數(shù)的問題,得到不等式的證明;(3)考查利用導(dǎo)數(shù)處理函數(shù)的最值和不等式的恒成立求參數(shù)的范圍問題,求導(dǎo)過程中用到了課后習(xí)題ex≥x+1這個(gè)結(jié)論,考查學(xué)生對(duì)課本知識(shí)的掌握程度.

解答 (1)解:依題意,函數(shù)f(x)的定義域?yàn)椋?,+∞),對(duì)f(x)求導(dǎo),得$f'(x)=\frac{1}{x}-a=\frac{1-ax}{x}$.
①若a≤0,對(duì)一切x>0有f'(x)>0,函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,+∞).
②若a>0,當(dāng)$x∈(0,\frac{1}{a})$時(shí),f'(x)>0;當(dāng)$x∈(\frac{1}{a},+∞)$時(shí),f'(x)<0.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是$(0,\frac{1}{a})$,單調(diào)遞減區(qū)間是$(\frac{1}{a},+∞)$.               (3分)
(2)解:設(shè)切線l2的方程為y=k2x,切點(diǎn)為(x2,y2),則${y_2}={e^{x_2}}$,${k_2}=g'({x_2})={e^{x_2}}=\frac{y_2}{x_2}$,
所以x2=1,y2=e,則${k_2}={e^{x_2}}=e$.
由題意知,切線l1的斜率為${k_1}=\frac{1}{k_2}=\frac{1}{e}$,l1的方程為$y={k_1}x=\frac{1}{e}x$.
設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1,y1),則${k_1}=f'({x_1})=\frac{1}{x_1}-a=\frac{1}{e}=\frac{y_1}{x_1}$,
所以${y_1}=\frac{x_1}{e}=1-a{x_1}$,$a=\frac{1}{x_1}-\frac{1}{e}$.
又因?yàn)閥1=lnx1-a(x1-1),消去y1和a后,整理得$ln{x_1}-1+\frac{1}{x_1}-\frac{1}{e}=0$.      (6分)
令$m(x)=lnx-1+\frac{1}{x}-\frac{1}{e}=0$,則$m'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{x-1}{x^2}$,m(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
若x1∈(0,1),因?yàn)?m(\frac{1}{e})=-2+e-\frac{1}{e}>0$,$m(1)=-\frac{1}{e}<0$,所以${x_1}∈(\frac{1}{e},1)$,
而$a=\frac{1}{x_1}-\frac{1}{e}$在${x_1}∈(\frac{1}{e},1)$上單調(diào)遞減,所以$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.
若x1∈(1,+∞),因?yàn)閙(x)在(1,+∞)上單調(diào)遞增,且m(e)=0,則x1=e,
所以$a=\frac{1}{x_1}-\frac{1}{e}=0$(舍去).
綜上可知,$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.                                               (9分)
(3)證明:h(x)=f(x+1)+g(x)=ln(x+1)-ax+ex,$h'(x)={e^x}+\frac{1}{x+1}-a$.
①當(dāng)a≤2時(shí),因?yàn)閑x≥x+1,所以$h'(x)={e^x}+\frac{1}{x+1}-a≥x+1+\frac{1}{x+1}-a≥2-a≥0$,h(x)在[0,+∞)上遞增,h(x)≥h(0)=1恒成立,符合題意.
②當(dāng)a>2時(shí),因?yàn)?h''(x)={e^x}-\frac{1}{{{{(x+1)}^2}}}=\frac{{{{(x+1)}^2}{e^x}-1}}{{{{(x+1)}^2}}}≥0$,所以h′(x)在[0,+∞)上遞增,且h′(0)=2-a<0,則存在x0∈(0,+∞),使得h′(0)=0.
所以h(x)在(0,x0)上遞減,在(x0,+∞)上遞增,又h(x0)<h(0)=1,所以h(x)≥1不恒成立,不合題意.                                                                  (13分)
綜合①②可知,所求實(shí)數(shù)a的取值范圍是(-∞,2].                           (14分)

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求曲線的切線問題及研究不等式恒成立問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知水池的容積是20m3,向水池注水的水龍頭A和水龍頭B的流速都是1m3/h,它們?cè)谝粫円箖?nèi)隨機(jī)開放,求水池不溢出水的概率.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x∈R,那么$\sqrt{(x-2)^{2}+{2}^{2}}$+$\sqrt{(x-8)^{2}+{4}^{2}}$的最小值是6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-ax-1.
(1)若a=1,求證:f(x)≥0;
(2)求函數(shù)y=f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.將函數(shù)y=sin2x的圖象經(jīng)過怎樣的變換,就能得到函數(shù)y=-sin(2x+$\frac{π}{5}$)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知公差不為零的等差數(shù)列的第1,4,13項(xiàng)恰好是某等比數(shù)列的第1,3,5項(xiàng),那么該等比數(shù)列的公比為±$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.對(duì)任意的a、b∈R,定義:min{a,b}=$\left\{\begin{array}{l}a,(a<b)\\ b.(a≥b)\end{array}\right.$;max{a,b}=$\left\{\begin{array}{l}a,(a≥b)\\ b.(a<b)\end{array}\right.$.則下列各式中恒成立的個(gè)數(shù)為( 。
①min{a,b}+max{a,b}=a+b
②min{a,b}-max{a,b}=a-b
③(min{a,b})•(max{a,b})=a•b
④(min{a,b})÷(max{a,b})=a÷b.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右頂點(diǎn)分別為A,B,左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)O為坐標(biāo)原點(diǎn),線段OB的中垂線與橢圓在第一象限的交點(diǎn)為P,設(shè)直線PA,PB,PF1,PF2的斜率分別為k1,k2,k3,k4,若k1•k2=-$\frac{1}{4}$,則k3•k4=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{8}{3}$C.$-\frac{3}{8}$D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)點(diǎn)P在曲線y=ex,點(diǎn)Q在曲線y=lnx上,則|PQ|最小值為(  )
A.ln2B.$\sqrt{2}$C.1+$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

同步練習(xí)冊(cè)答案