【題目】平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率為,且點(diǎn)在橢圓C上.橢圓C的左頂點(diǎn)為A.
(1)求橢圓C的方程
(2)橢圓的右焦點(diǎn)且斜率為的直線與橢圓交于P,Q兩點(diǎn),求三角形APQ的面積;
(3)過點(diǎn)A作直線與橢圓C交于另一點(diǎn)B.若直線交軸于點(diǎn)C,且,求直線的斜率.
【答案】(1)(2)(3)
【解析】
(1)根據(jù)橢圓的離心率和過點(diǎn)坐標(biāo),可得關(guān)于的方程,解方程即可得到橢圓的方程;
(2)設(shè)直線PQ的方程為與橢圓聯(lián)立得:,利用弦長(zhǎng)公式和點(diǎn)到直線的距離公式,可求得三角形的面積;
(3)由題意知直線的斜率存在,設(shè)的方程為:,利用可得關(guān)于的方程,解方程即可得答案;
(1)由題意知:
解得:,所以,所求橢圓C的方程為.
(2)設(shè)直線PQ的方程為與橢圓聯(lián)立得:
其判別式
所以,則
又點(diǎn)A到直線PQ的距離為
所以三角形APQ的面積為
(3)由題意知直線的斜率存在,設(shè)為,過點(diǎn),則的方程為:,
聯(lián)立方程組,消去整理得:,
恒成立,令,
由,得,
將代入中,得到,得,
解得:,.所以直線的斜率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面是邊長(zhǎng)為的正方形,是正三角形,為線段的中點(diǎn),點(diǎn)為底面內(nèi)的動(dòng)點(diǎn),則下列結(jié)論正確的是( )
A.若時(shí),平面平面
B.若時(shí),直線與平面所成的角的正弦值為
C.若直線和異面時(shí),點(diǎn)不可能為底面的中心
D.若平面平面,且點(diǎn)為底面的中心時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:關(guān)于的不等式無(wú)解;命題:指數(shù)函數(shù)是上的增函數(shù).
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過橢圓右焦點(diǎn)的直線交橢圓與A,B兩點(diǎn),為其左焦點(diǎn),已知的周長(zhǎng)為8,橢圓的離心率為.
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓任意一條切線與橢圓恒有兩個(gè)交點(diǎn),?若存在,求出該圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查某廠工人生產(chǎn)某件產(chǎn)品的效率,隨機(jī)抽查了100名工人某天生產(chǎn)該產(chǎn)品的數(shù)量,所取樣本數(shù)據(jù)分組區(qū)間為,由此得到如圖所示頻率分布直方圖.
(1)求的值并估計(jì)該廠工人一天生產(chǎn)此產(chǎn)品數(shù)量的平均值;
(2)從生產(chǎn)產(chǎn)品數(shù)量在的四組工人中,用分層抽樣方法抽取13人,則每層各應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,不與坐標(biāo)軸垂直的直線與拋物線交于兩點(diǎn),當(dāng)且時(shí),.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若過定點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長(zhǎng)為2的等邊三角形且垂直于底, 是的中點(diǎn)。
(1)證明:直線平面;
(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了改善居民的休閑娛樂活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.
(1)設(shè),試求的周長(zhǎng)關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com