【題目】在直角坐標xOy中,直線l的參數方程為{ (t為參數)在以O為極點.x軸正半軸為極軸的極坐標系中.曲線C的極坐標方程為ρ=4sinθ﹣2cosθ. (I)求直線l的普通方程與曲線C的直角坐標方程:
(Ⅱ)若直線l與y軸的交點為P,直線l與曲線C的交點為A,B,求|PA||PB|的值.
【答案】解:(Ⅰ)由x= t,得t= x,將其代入y=3+ t中得:y=x+3, ∴直線l的直角坐標方程為x﹣y+3=0.
由ρ=4sinθ﹣2cosθ,得ρ2=4ρsinθ﹣2ρcosθ,
∴x2+y2=4y﹣2x,即x2+y2+2x﹣4y=0,
∴曲線C的直角坐標方程為x2+y2+2x﹣4y=0;
(Ⅱ)由l:y=x+3,得P(0,3),
由 ,
解得 或 ,
∴|PA||PB|= =3.
【解析】(Ⅰ)由x= t,得t= x,將其代入y=3+ t中,即可得出直線l的直角坐標方程.由ρ=2cosθ+4sinθ,得ρ2=2ρcosθ+4ρsinθ,把 代入即可得出曲線C的直角坐標方程.(Ⅱ)分別求出P、A、B的坐標,根據兩點之間的距離公式計算即可.
科目:高中數學 來源: 題型:
【題目】2016年微信用戶數量統(tǒng)計顯示,微信注冊用戶數量已經突破9.27億.微信用戶平均年齡只有26歲,97.7%的用戶在50歲以下,86.2%的用戶在18﹣36歲之間.為調查大學生這個微信用戶群體中每人擁有微信群的數量,現(xiàn)從北京市大學生中隨機抽取100位同學進行了抽樣調查,結果如下:
微信群數量 | 頻數 | 頻率 |
0至5個 | 0 | 0 |
6至10個 | 30 | 0.3 |
11至15個 | 30 | 0.3 |
16至20個 | a | c |
20個以上 | 5 | b |
合計 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若從這100位同學中隨機抽取2人,求這2人中恰有1人微信群個數超過15個的概率;
(Ⅲ)以這100個人的樣本數據估計北京市的總體數據且以頻率估計概率,若從全市大學生中隨機抽取3人,記X表示抽到的是微信群個數超過15個的人數,求X的分布列和數學期望EX.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)滿足f(x)=f( )且當x∈[ ,1]時,f(x)=lnx,若當x∈[ ]時,函數g(x)=f(x)﹣ax與x軸有交點,則實數a的取值范圍是( )
A.[﹣ ,0]
B.[﹣πl(wèi)nπ,0]
C.[﹣ , ]
D.[﹣ ,﹣ ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O為坐標原點,P(x,y)為函數y=1+lnx圖象上一點,記直線OP的斜率k=f(x). (Ⅰ)若函數f(x)在區(qū)間(m,m+ )(m>0)上存在極值,求實數m的取值范圍;
(Ⅱ)當x≥1時,不等式f(x)≥ 恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an},{bn}滿足bn=an+1﹣an(n=1,2,3,…).
(1)若bn=10﹣n,求a16﹣a5的值;
(2)若 且a1=1,則數列{a2n+1}中第幾項最��?請說明理由;
(3)若cn=an+2an+1(n=1,2,3,…),求證:“數列{an}為等差數列”的充分必要條件是“數列{cn}為等差數列且bn≤bn+1(n=1,2,3,…)”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos(x+ )+sinx.
(I)利用“五點法”,列表并畫出f(x)在[﹣ , ]上的圖象;
(II)a,b,c分別是△ABC中角A,B,C的對邊.若a= ,f(A)= ,b=1,求△ABC的面積.
|
|
|
|
|
|
x |
|
|
|
|
|
f(x) |
|
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某軟件公司新開發(fā)一款學習軟件,該軟件把學科知識設計為由易到難共12關的闖關游戲.為了激發(fā)闖關熱情,每闖過一關都獎勵若干慧幣(一種網絡虛擬幣).該軟件提供了三種獎勵方案:第一種,每闖過一關獎勵40慧幣;第二種,闖過第一關獎勵4慧幣,以后每一關比前一關多獎勵4慧幣;第三種,闖過第一關獎勵0.5慧幣,以后每一關比前一關獎勵翻一番(即增加1倍),游戲規(guī)定:闖關者須于闖關前任選一種獎勵方案.
(Ⅰ)設闖過n ( n∈N,且n≤12)關后三種獎勵方案獲得的慧幣依次為An , Bn , Cn , 試求出An , Bn , Cn的表達式;
(Ⅱ)如果你是一名闖關者,為了得到更多的慧幣,你應如何選擇獎勵方案?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com