(滿分12分)以下莖葉圖記錄了甲、乙兩組各四名同學的植樹棵樹.乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.

(Ⅰ)如果X=8,求乙組同學植樹棵樹的平均數(shù)和方差;
(II)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為19的概率.

(1) 
(Ⅱ) 

解析試題分析:(1)當X=8時,由莖葉圖可知,乙組同學的植樹棵數(shù)是:8,8,9,10,
所以平均數(shù)為 
方差為
(Ⅱ)記甲組四名同學為A1,A2,A3,A4,他們植樹的棵數(shù)依次為9,9,11,11;乙組四名同學為B1,B2,B3,B4,他們植樹的棵數(shù)依次為9,8,9,10,分別從甲、乙兩組中隨機選取一名同學,所有可能的結(jié)果有16個,它們是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4),
(A2,B1),(A2,B2),(A2,B3),(A2,B4),
(A3,B1),(A2,B2),(A3,B3),(A1,B4),
(A4,B1),(A4,B2),(A4,B3),(A4,B4),
用C表示:“選出的兩名同學的植樹總棵數(shù)為19”這一事件,則C中的結(jié)果有4個,它們是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率為……12分
考點:本題主要考查莖葉圖的概念,平均數(shù)及方差計算,古典概型概率的計算。
點評:典型題,統(tǒng)計中的抽樣方法,頻率直方圖,平均數(shù)、方差計算,概率計算及分布列問題,是高考必考內(nèi)容及題型。古典概型概率的計算問題,關(guān)鍵是明確基本事件數(shù),往往借助于“樹圖法”,做到不重不漏。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某種產(chǎn)品的廣告費支出與銷售額(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

x
2
4
5
6
8
y
30
40
60
50
70
其中
(1)畫出散點圖;
(2)求回歸直線方程;
(3)試預測廣告支出為10百萬元時,銷售額多大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(文科)某高校從參加今年自主招生考試的學生中隨機抽取容量為50的學生成績樣本,得頻率分布表如下:

組號
 
分組
 
頻數(shù)
 
頻率
 
第一組
 
 [230,235)
 
8
 
0.16
 
第二組
 
 [235,240)
 

 
0.24
 
第三組
 
 [240,245)
 
15
 

 
第四組
 
 [245,250)
 
10
 
0.20
 
第五組
 
 [250,255]
 
5
 
0.10
 
合             計
 
50
 
1.00
 
(1)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學生,高校決定在第三、四、五組中用分層抽樣法抽取6名學生進行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學生中錄取2名學生,求2人中至少有1名是第四組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖中的信息,回答下列問題.

(Ⅰ)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)根據(jù)頻率分布直方圖,估計本次考試的平均分;
(Ⅲ)若從60名學生中隨機抽取2人,抽到的學生成績在[40,70)記0分,記[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


某中學將100名高一新生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A、B兩種不同的教學方式分別在甲、乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如下.記成績不低于90分者為“成績優(yōu)秀”.

(1)在乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的2個至多一個“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有90%的把握認為:“成績優(yōu)秀”與教學方式有關(guān).

 
甲班
(A方式)
乙班
(B方式)
總計
成績優(yōu)秀
 
 
 
成績不優(yōu)秀
 
 
 
總計
 
 
 
附:

0.25
0.15
0.10
0.05
0.025
k
1.323
2.072
2. 706
3. 841
5. 024
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某學校課題組為了研究學生的數(shù)學成績與物理成績之間的關(guān)系,隨機抽取高二年級20名學生某次考試成績(滿分100分)如下表所示:

序號
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
數(shù)學成績
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理成績
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
若單科成績85分以上(含85分),則該科成績?yōu)閮?yōu)秀.
(1)根據(jù)上表完成下面的2×2列聯(lián)表(單位:人):
 
數(shù)學成績優(yōu)秀
數(shù)學成績不優(yōu)秀
 合  計
物理成績優(yōu)秀
 
 
 
物理成績不優(yōu)秀
 
 
 
合  計
 
 
20
(2)根據(jù)題(1)中表格的數(shù)據(jù)計算,有多大的把握,認為學生的數(shù)學成績與物理成績之間有關(guān)系?
參考數(shù)據(jù):
假設(shè)有兩個分類變量,它們的值域分別為,其樣本頻數(shù)列聯(lián)表(稱為列聯(lián)表)為:
 


合計








合計



則隨機變量,其中為樣本容量;
②獨立檢驗隨機變量的臨界值參考表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題12分)我校高二(1)班男同學有45名,女同學有15名,按照分層抽樣的方法組建了一個4人的課外興趣小組.
(1)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(2)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;
(3)試驗結(jié)束后,第一次做試驗的同學得到的試驗數(shù)據(jù)為68,70,71,72,74,第二次做試驗的同學得到的試驗數(shù)據(jù)為69,70,70,72,74,請問哪位同學的實驗更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
PM2. 5是指大氣中直徑小于或等于2. 5微米的顆粒物,也稱為 可人肺顆粒物.我國PM2. 5標準采用世衛(wèi)組織設(shè)定的最寬限 值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級; 在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在 75微克/立方米以上空氣質(zhì)量為超標.
某市環(huán)保局從市區(qū)2012年全年每天的PM2.5監(jiān)測數(shù)據(jù)中 隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為 莖,個位為葉)

(I)從這9天的數(shù)據(jù)中任取2天的數(shù)據(jù),求恰有一天空氣質(zhì)量達到一級的概率;
(II) 以這9天的PM2.   5日均值來估計供暖期間的空氣質(zhì)量情況,則供暖期間(按150天計算)中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)某種產(chǎn)品的廣告費支出x與消費額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

x
 
2
 
4
 
5
 
6
 
8
 
y
 
30
 
40
 
60
 
50
 
70
 
(1)求線性回歸方程;
(2)預測當廣告費支出為700萬元時的銷售額.

查看答案和解析>>

同步練習冊答案