分析 (1)利用f(3)=1,函數(shù)滿足f(xy)=f(x)+f(y),賦值法求解即可.
(2)將f(3)=1轉(zhuǎn)化為f(9),根據(jù)定義域和單調(diào)性轉(zhuǎn)化為不等式求解.
解答 解:(1)f(x)是定義在(-1,+∞)內(nèi)的增函數(shù),f(3)=1,函數(shù)滿足f(xy)=f(x)+f(y),
令x=y=3,f(9)=f(3×3)=f(3)+f(3)=1+1=2.
即f(9)=2.
(2)由(1)可得f(9)=2,
則f(a)>f(a-1)+2轉(zhuǎn)化為f(a)>f(a-1)+f(9),
∴f(a)>f(9a-9),
又∵f(x)在(-1,+∞)上是增函數(shù),
∴$\left\{{\begin{array}{l}{a>-1}\\{a-1>-1}\\{a>9a-9}\end{array}}\right.∴\left\{{\begin{array}{l}{a>-1}\\{a>0}\\{a<\frac{9}{8}}\end{array}}\right.$,
∴$0<a<\frac{9}{8}$.
故得a的取值范圍是(0,$\frac{9}{8}$).
點評 本題考查了抽象函數(shù)的賦值法求解函數(shù)值,利用函數(shù)的單調(diào)性求解不等式問題.屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 13 | C. | $\sqrt{17}$ | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com