已知函數(shù)f(x)=f′(
π
4
)cosx+sinx,則f′(
π
4
)的值為
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由求導(dǎo)法則和基本初等函數(shù)的求導(dǎo)公式求出f′(x),再把x=
π
4
代入求出f′(
π
4
)的值.
解答: 解:由題意得,f′(x)=-f′(
π
4
)sinx+cosx,
則f′(
π
4
)=-f′(
π
4
)sin
π
4
+cos
π
4

解得f′(
π
4
)=
2
-1
,
故答案為:
2
-1
點(diǎn)評:本題考查求導(dǎo)法則和基本初等函數(shù)的求導(dǎo)公式,熟練掌握公式和法則是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)條件中,p是q的充要條件條件的是
 

①p:a>b,q:a2>b2; ②p:a>b,q:2a>2b
③p:ax2+by2=c為雙曲線,q:ab<0;④p:ax2+bx+c>0,q:
c
x2
-
b
x
+a>0

⑤p:m<-2或m>6;q:y=x2+mx+m+3有兩個(gè)不同的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U為R,已知A={x|0≤x≤6},B={x|f(x)=
8-x
}.
(Ⅰ)A∪B;
(Ⅱ)∁U(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:①在定義域D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域?yàn)閇-b,-a],那么y=f(x)叫做對稱函數(shù).現(xiàn)有f(x)=
1-x
-k是對稱函數(shù),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,A、B、C所對的邊分別是a,b,c,A=30°,若將一枚質(zhì)地均勻的正方體骰子先后拋擲兩次,所得的點(diǎn)數(shù)分別為a、b,則滿足條件的三角形有兩個(gè)解的概率是( 。
A、
1
6
B、
1
3
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是實(shí)數(shù),則“|b|>|a|>0”是“
b
a
>1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“0<x<1”是“l(fā)og2(x+1)<1”的( 。
A、充分非必要條件
B、必要非充分條件
C、充分必要條件
D、既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a3=5,且a1,a7,a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求a1+a3+a5+…+a2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2x+c(a,c∈N*),f(1)=5,6<f(2)<11,?x∈[
1
2
,
3
2
],f(x)-2mx≤1恒成立,則實(shí)數(shù)m的范圍是( 。
A、m≥0
B、m≥1
C、m≥
9
4
D、m≥
11
4

查看答案和解析>>

同步練習(xí)冊答案