已知矩陣A=
11
23
,B=
12
23

(Ⅰ)求矩陣A的逆矩陣A-1
(Ⅱ)求直線x+y-1=0在矩陣A-1B對應(yīng)的線性變換作用下所得曲線的方程.
考點:逆變換與逆矩陣
專題:矩陣和變換
分析:(I)根據(jù)所給的矩陣求這個矩陣的逆矩陣,可以首先求出ad-bc的值,再代入逆矩陣的公式,求出結(jié)果.
(Ⅱ)結(jié)合(I)的結(jié)論先求出A-1B,設(shè)直線x+y-1=0上任意一點P(x,y)在矩陣A-1B對應(yīng)的線性變換作用下得到P′(x′,y′),可得
x′=x+3y
y′=y
,進而可得直線x+y-1=0在矩陣A-1B對應(yīng)的線性變換作用下所得曲線的方程.
解答: 解:(Ⅰ)設(shè)A-1=
ab
cd
,
∵A•A-1=
11
23
ab
cd
=
10
01
,
解得:a=3,b=-1,c=-2,d=1,-------------(1分)
且A-1=
3-1
-21
---------------------------------------------(3分)
(Ⅱ)∵A-1B=
3-1
-21
12
23
=
13
01
---------------------(4分)
設(shè)直線x+y-1=0上任意一點P(x,y)在矩陣A-1B對應(yīng)的線性變換作用下得到P′(x′,y′),
13
01
x
y
=
x′
y′
-----------------------------------(5分)
即:
x′=x+3y
y′=y
,從而
x=x′-3y′
y=y′
------------------------(6分)
代入x+y-1=0得x′-2y′-1=0  
即x-2y-1=0為所求的曲線方程.7分)
點評:本小題主要考查逆矩陣、矩陣的乘法等基礎(chǔ)知識,考查書寫表達能力、運算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,BC=2,A=45°,B為銳角,點O是△ABC外接圓的圓心,則
OA
BC
的取值范圍是( 。
A、(-2,2
2
]
B、(-2
2
,2]
C、[-2
2
,2
2
]
D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為R,對任意實數(shù)u,v滿足f(u+v)=f(u)+f(v),且f(uv)=uf(v)+vf(u).用含u、v、f(u)、f(v)的表達式來表示f(
u
v
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡下列各式:
(1)
a
1
2
-b
1
2
a
1
2
+b
1
2
+
a
1
2
+b
1
2
a
1
2
-b
1
2
;
(2)(a2-2+a-2)÷(a2-a-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
sin(π+ωx),cosωx),
b
=(sin(
3
2
π-ωx),-cosωx),ω>0,設(shè)f(x)=
a
b
的最小正周期為π.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)x∈(-
π
3
π
6
)時,求f(x)的值域;
(Ⅲ)求滿足f(α)=0且-1<α<π的角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)對定義域D的每一個x1,都存在唯一的x2∈D,使f(x1)f(x2)=1成立,則稱f(x)為“自倒函數(shù)”,下列命題正確的是
 
.(把你認(rèn)為正確自倒函數(shù)命題的序號都填上)
(1)f(x)=sinx+
2
(x∈[-
π
2
,
π
2
])是自倒函數(shù);  
(2)自倒函數(shù)f(x)的值域可以是R;
(3)自倒函數(shù)f(x)的可以是奇函數(shù);
(4)若y=f(x),y=g(x)都是自倒函數(shù),且定義域相同,則y=f(x)•g(x)是自倒函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法不正確的是( 。
A、命題“對?x∈R,都有x2≥0”的否定為“?x0∈R,使得x02<0”
B、“a>b”是“ac2>bc2”的必要不充分條件
C、“若tanα≠
3
,則α≠
π
3
”是真命題
D、甲、乙兩位學(xué)生參與數(shù)學(xué)模擬考試,設(shè)命題p是“甲考試及格”,q是“乙考試及格”,則命題“至少有一位學(xué)生不及格”可表示為(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=b2lnx-bx-3(b∈R)的極值點為x=1,函數(shù)h(x)=ax2+bx+4b-1.
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間,并比較g(x)與g(1)的大小關(guān)系;
(Ⅱ)當(dāng)a=
1
2
時,函數(shù)t(x)=ln(1+x2)-h(x)+x+4-k(k∈R),試判斷函數(shù)t(x)的零點個數(shù);
(Ⅲ)如果函數(shù)f(x),f1(x),f2(x)在公共定義域D上,滿足f1(x)<f(x)<f2(x),那么就稱f(x)為f1(x),f2(x)的“伴隨函數(shù)”,已知函數(shù)f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx,f2(x)=
1
2
x2+2ax,若在區(qū)間(1,+∞)上,函數(shù)f(x)=g(x)+h(x)是f1(x),f2(x)的“伴隨函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示.(每個分組包括左端點,不包括右端點,如第一組表示[1000,1500))

(Ⅰ)求居民收入在[1500,2500)的頻率;
(Ⅱ)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進一步分析,則月收入在[2500,3000)的這段應(yīng)抽取多少人?

查看答案和解析>>

同步練習(xí)冊答案