(2012•北海一模)定義在R上的奇函數(shù)y=f(x),對任意不等的實數(shù)x1,x2都有[f(x1)-f(x2)](x1-x2)<0成立,若不等式f(x2-2x)+f(2y-y2)≤0成立,則當1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]
分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函數(shù)f(x)是定義在R上的減函數(shù);再利用函數(shù)f(x)是定義在R上的奇函數(shù)得f(-x)=-f(x),二者相結(jié)合及不等式得(x-y)(x+y-2)≥0,結(jié)合
y
x
的幾何意義可求范圍
解答:解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函數(shù)f(x)是定義在R上的減函數(shù)
又因為函數(shù)f(x)是定義在R上的奇函數(shù),所以有函數(shù)f(-x)=-f(x)
∵f(x2-2x)+f(2y-y2)≤0
∴f(x2-2x)≤-f(2y-y2)=f(y2-2y)
∴x2-2x≥y2-2y即(x-y)(x+y-2)≥0,又1≤x≤4
x-y≥0
x+y-2≥0
1≤x≤4
x-y≤0
x+y-2≤0
1≤x≤4

作出不等式組表示的平面區(qū)域,如圖所求的陰影部分,
令k=
y
x
,則k的幾何意義是在可行域內(nèi)任取一點,與原點(0,0)連線的斜率
x=4
y=x
可得C(4,4),由
x=4
y+x-2=0
可得B(4,-2)
∵KOC=KOA=1,KOB=-
1
2

結(jié)合圖形可知,-
1
2
y
x
≤1

故答案為[-
1
2
,1]
點評:本題主要考查函數(shù)奇偶性和單調(diào)性的綜合應用問題.關鍵點有兩處:①判斷出函數(shù)f(x)的單調(diào)性;②利用奇函數(shù)的性質(zhì)得到函數(shù)f(-x)=-f(x)③明確目標函數(shù)的幾何意義
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•北海一模)定義一種運算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北海一模)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(I)求數(shù)列{an}的通項;
(II)記bn=2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北海一模)設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且2
F1F2
+
F2Q
=
0
,則橢圓C的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北海一模)如圖,在120°二面角α-l-β內(nèi)半徑為1的圓O1與半徑為2的圓O2分別在半平面α、β內(nèi),且與棱l切于同一點P,則以圓O1與圓O2為截面的球的表面積為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北海一模)i為虛數(shù)單位,復平面內(nèi)表示復數(shù)z=
1+i
i
的點在( 。

查看答案和解析>>

同步練習冊答案