已知三棱錐P-ABC各側(cè)棱長(zhǎng)均為2,三個(gè)頂角均為40°,M,N分別為PA,PC上的點(diǎn),求△BMN周長(zhǎng)的最小值.
【答案】分析:將三棱錐的側(cè)面沿線段PB展開(kāi),并畫(huà)出正三棱錐P-ABC側(cè)面展開(kāi)圖,從而將問(wèn)題轉(zhuǎn)化為求頂角為120°等腰三角形的底邊之長(zhǎng)的問(wèn)題,由此結(jié)合余弦定理,則不難得到本題答案.
解答:解:將三棱錐的側(cè)面沿線段PB展開(kāi),
得到如下圖右邊的三個(gè)頂角為40°的等腰三角形拼成的五邊形PBACB1
∵正三棱錐P-ABC中,∠APB=40°
∴五邊形PBACB1中∠BPB1=40°×3=120°,
再將該五邊形圍成三棱角的側(cè)面,得到左圖的截面△AEF,
由此可得,右圖中的線段BB1即為△BMN周長(zhǎng)的最小值,
∵△PBB1中,PB=PB1=2,∠BPB1=120°
∴BB1==6
因此,△BMN周長(zhǎng)的最小值為6.
點(diǎn)評(píng):本題給出特殊三棱錐,求截面三角形周長(zhǎng)的最小值.著重考查了棱錐的結(jié)構(gòu)特征和余弦定理解三角形的知識(shí),其中將三棱錐的側(cè)面展開(kāi),將空間問(wèn)題轉(zhuǎn)化為平面上兩點(diǎn)間的距離問(wèn)題,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC的三條側(cè)棱PA,PB,PC兩兩相互垂直,且PA=2
3
,PB=3,PC=2外接球的直徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC中,PC⊥底面ABC,AB=BC,D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱錐P-ABC所成上、下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB的中點(diǎn),且△PDB是正三角形,PA⊥PC.
(I)求證:DM∥平面PAC;
(II)求證:平面PAC⊥平面ABC;
(Ⅲ)求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)二模)如圖,已知三棱錐P-ABC中,PA⊥面ABC,其中正視圖為Rt△PAC,AC=2
6
,PA=4,俯視圖也為直角三角形,另一直角邊長(zhǎng)為2
2

(Ⅰ)畫(huà)出側(cè)視圖并求側(cè)視圖的面積;
(Ⅱ)證明面PAC⊥面PAB;
(Ⅲ)求直線PC與底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃浦區(qū)二模)已知三棱錐P-ABC的棱長(zhǎng)都是2,點(diǎn)D是棱AP上不同于P的點(diǎn).
(1)試用反證法證明直線BD與直線CP是異面直線.
(2)求三棱錐P-ABC的體積VP-ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案