【題目】設(shè)為彼此不重合的三個(gè)平面,為直線,給出下列結(jié)論:

①若 ,則 ②若,且

③若直線與平面內(nèi)的無數(shù)條直線垂直,則

④若內(nèi)存在不共線的三點(diǎn)到的距離相等,則

上面結(jié)論中,正確的序號(hào)為_______.

【答案】①②

【解析】

根據(jù)題意,逐一分析各個(gè)選項(xiàng),利用線面、面面之間的關(guān)系,應(yīng)用有關(guān)定理和推理,及舉反例等手段,排除錯(cuò)誤,即可得到答案

由題意,對(duì)于①中,因?yàn)閮蓚(gè)平行平面中的一個(gè)和第三個(gè)平面垂直,則另一個(gè)也和第三個(gè)平面垂直,所以①是正確的;

對(duì)于②中,由兩個(gè)平面都和第三個(gè)平面垂直,則它們的交線也和第三個(gè)平面垂直,所以②是正確的;

對(duì)于③中,直線和平面內(nèi)的無數(shù)條直線垂直,若是無數(shù)條平行線,此時(shí)直線和平面不一定垂直,所以③不正確;

對(duì)于④中,內(nèi)存在不共線的三點(diǎn)到平面的距離相等,這三個(gè)點(diǎn)可能有兩個(gè)相交平面的兩側(cè),所以④不正確,

所以正確命題的序號(hào)為①②.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 。

(1)求函數(shù)的定義域和值域;

(2)設(shè)為實(shí)數(shù)),求時(shí)的最大值;

(3)對(duì)(2)中,若對(duì)所有的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx+ mx2﹣(m+1)x+1.
(1)若g(x)=f'(x),討論g(x)的單調(diào)性;
(2)若f(x)在x=1處取得極小值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電子商務(wù)的發(fā)展, 人們的購物習(xí)慣正在改變, 基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決. 小韓是位網(wǎng)購達(dá)人, 每次購買商品成功后都會(huì)對(duì)電商的商品和服務(wù)進(jìn)行評(píng)價(jià). 現(xiàn)對(duì)其近年的200次成功交易進(jìn)行評(píng)價(jià)統(tǒng)計(jì), 統(tǒng)計(jì)結(jié)果如下表所示.

對(duì)服務(wù)好評(píng)

對(duì)服務(wù)不滿意

合計(jì)

對(duì)商品好評(píng)

80

40

120

對(duì)商品不滿意

70

10

80

合計(jì)

150

50

200

(1) 是否有的把握認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)? 請(qǐng)說明理由;

(2) 若針對(duì)商品的好評(píng)率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進(jìn)行觀察, 求只有一次好評(píng)的概率.

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈(1,+∞),函數(shù)f(x)=ex+2ax(a∈R),函數(shù)g(x)=| ﹣lnx|+lnx,其中e為自然對(duì)數(shù)的底數(shù).
(1)若a=﹣ ,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)a∈(2,+∞)時(shí),f′(x﹣1)>g(x)+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時(shí)期吳國的數(shù)學(xué)家趙爽曾創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個(gè)全等的直角三角形與中間的小正方形拼成一個(gè)大正方形,其中一個(gè)直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機(jī)投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在P地正西方向8km的A處和正東方向1km的B處各有一條正北方向的公路AC和BD,現(xiàn)計(jì)劃在AC和BD路邊各修建一個(gè)物流中心E和F,為緩解交通壓力,決定修建兩條互相垂直的公路PE和PF,設(shè)∠EPA=α(0<α< ).

(1)為減少對(duì)周邊區(qū)域的影響,試確定E,F(xiàn)的位置,使△PAE與△PFB的面積之和最;
(2)為節(jié)省建設(shè)成本,試確定E,F(xiàn)的位置,使PE+PF的值最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥BD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b,AC與BD交于點(diǎn)O,M為OC的中點(diǎn).

(1)求證:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值為 ,求a:b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;

3)從評(píng)分在的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案