【題目】非空集合關(guān)于運(yùn)算滿(mǎn)足:①對(duì)任意,都有;②存在使得對(duì)于一切都有,則稱(chēng)是關(guān)于運(yùn)算的融洽集,現(xiàn)有下列集合與運(yùn)算:①是非負(fù)整數(shù)集,:實(shí)數(shù)的加法;②是偶數(shù)集,:實(shí)數(shù)的乘法;③是所有二次三項(xiàng)式構(gòu)成的集合,:多項(xiàng)式的乘法; ④,:實(shí)數(shù)的乘法;其中屬于融洽集的是________(請(qǐng)?zhí)顚?xiě)編號(hào))

【答案】①④

【解析】

逐一驗(yàn)證每個(gè)選項(xiàng)是否滿(mǎn)足“融洽集”的兩個(gè)條件,若兩個(gè)都滿(mǎn)足,是“融洽集”,有一個(gè)不滿(mǎn)足,則不是“融洽集”.

①對(duì)于任意的兩非負(fù)整數(shù)仍為非負(fù)整數(shù),

所以,取及任意的非負(fù)整數(shù)

,因此是非負(fù)整數(shù)集,

:實(shí)數(shù)的加法是“融洽集”;

②對(duì)于任意的偶數(shù),不存在,

使得成立,

所以②的不是“融洽集”;

③對(duì)于二次三項(xiàng)式,若任意時(shí),

其積就不是二次三項(xiàng)式,故不是“融洽集”;

,設(shè),

所以;取,任意,

所以④中的是“融洽集”.

故答案為:①④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且

1證明:平面平面;

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為支援武漢抗擊疫情,某醫(yī)院準(zhǔn)備從6名醫(yī)生和3名護(hù)士中選出5人組成一個(gè)醫(yī)療小組遠(yuǎn)赴武漢,請(qǐng)解答下列問(wèn)題:(用數(shù)字作答)

(1)如果這個(gè)醫(yī)療小組中醫(yī)生和護(hù)士都不能少于2人,共有多少種不同的建組方案?

(2)醫(yī)生甲要擔(dān)任醫(yī)療小組組長(zhǎng),所以必選,而且醫(yī)療小組必須醫(yī)生和護(hù)士都有,共有多少種不同的建組方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)下列各條件寫(xiě)出直線方程,并化為一般式.

1)斜率是,經(jīng)過(guò)點(diǎn);

2)經(jīng)過(guò)點(diǎn),與直線垂直;

3)在軸和軸上的截距分別為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,平面,底面為直角梯形,,,,MPA上一點(diǎn),且,

(1)證明:PC//平面MBD;

(2)若,四棱錐的體積為,求直線AB與平面MBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是拋物線的焦點(diǎn),點(diǎn),分別在拋物線和圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則周長(zhǎng)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中).

1)判斷函數(shù)的奇偶性并證明;

2)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩隊(duì)參加聽(tīng)歌猜歌名游戲,每隊(duì).隨機(jī)播放一首歌曲, 參賽者開(kāi)始搶答,每人只有一次搶答機(jī)會(huì),答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分, 假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中人答對(duì)的概率分別為,且各人回答正確與否相互之間沒(méi)有影響.

(1)若比賽前隨機(jī)從兩隊(duì)的個(gè)選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個(gè)隊(duì)的概率;

(2)表示甲隊(duì)的總得分,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(3)求兩隊(duì)得分之和大于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓ab0)的離心率為,過(guò)橢圓的左、右焦點(diǎn)分別作傾斜角為的直線,分別交橢圓于A,BCD兩點(diǎn),當(dāng)時(shí),直線ABCD之間的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若AB不與x軸重合,點(diǎn)P在橢圓上,且滿(mǎn)足t0.,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案