【題目】某公司為評估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.

(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說明理由);

(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:

售價(jià)

33

35

37

39

41

43

45

47

銷量

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;

②根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤可以達(dá)到最大.

49428.74

11512.43

175.26

124650

(附:相關(guān)指數(shù)

【答案】(1)年度平均銷售額與方案1的運(yùn)作相關(guān)性強(qiáng)于方案2.(2)①采用回歸模型進(jìn)行擬合最為合適. ②

【解析】試題分析:(1)由等高條形圖可判斷年度平均銷售額與方案1的運(yùn)作相關(guān)性強(qiáng)于方案2.

(2)①由已知數(shù)據(jù)可知, 比較大小可得最佳擬合方案;

②由(1)可知,采用方案1的運(yùn)作效果較方案2好,故年利潤,求導(dǎo)求最值即可.

試題解析:(1)由等高條形圖可知,年度平均銷售額與方案1的運(yùn)作相關(guān)性強(qiáng)于方案2.

(2)①由已知數(shù)據(jù)可知,回歸模型對應(yīng)的相關(guān)指數(shù);

回歸模型對應(yīng)的相關(guān)指數(shù);

回歸模型對應(yīng)的相關(guān)指數(shù).

因?yàn)?/span>,所以采用回歸模型進(jìn)行擬合最為合適.

②由(1)可知,采用方案1的運(yùn)作效果較方案2好,

故年利潤, ,

當(dāng)時(shí), 單調(diào)遞增;

當(dāng)時(shí), 單調(diào)遞減,

故當(dāng)售價(jià)時(shí),利潤達(dá)到最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,記,若數(shù)列滿足:“存在,使得只要),必有”,則稱數(shù)列具有性質(zhì).

(Ⅰ)若數(shù)列滿足判斷數(shù)列是否具有性質(zhì)?是否具有性質(zhì)?

(Ⅱ)求證:“是有限集”是“數(shù)列具有性質(zhì)”的必要不充分條件;

(Ⅲ)已知是各項(xiàng)為正整數(shù)的數(shù)列,且既具有性質(zhì),又具有性質(zhì),求證:存在整數(shù),使得是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓

1)過點(diǎn)的圓的切線只有一條,求的值及切線方程;

2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面PAD平面ABCDPAPD,PA=PD,ABAD,AB=1AD=2, .

1)求證:PD⊥平面PAB;

2)求直線PB與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列4個(gè)命題,其中正確的命題序號(hào)為(
①|(zhì)x+ |的最小值是2 的最小值是2 ③log2x+logx2的最小值是2 ④3x+3x的最小值是2.
A.①②③
B.①②④
C.②③④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中, , , ,四邊形為矩形, ,平面平面,點(diǎn)為線段中點(diǎn).

(Ⅰ)求異面直線所成的角的正切值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的右焦點(diǎn)坐標(biāo)為,求的值;

(2)由橢圓上不同三點(diǎn)構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點(diǎn)的橢圓的內(nèi)接等腰直角三角形恰有三個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, 上,且∥面BDM.

(1)求直線PC與平面BDM所成角的正弦值;

(2)求平面BDM與平面PAD所成銳二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案