【題目】如圖,已知四邊形為梯形,,,四邊形為矩形,且平面平面,又,.
(1)求證:;
(2)求點到平面的距離.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接、,利用三線合一得出,,利用直線與平面垂直的判定定理可證明出平面,即可得出;
(2)過點在平面內作,垂足為點,證明出平面,并計算出三邊邊長,然后利用等面積法求出,即為點到平面的距離.
(1)如下圖所示,取的中點,連接、,
四邊形為矩形,,
平面平面,平面平面,平面,
平面,
平面,,,
四邊形為梯形,,,,
,為的中點,,
同理可得,,
又,平面.
平面,;
(2)如下圖所示,過點在平面內作,垂足為點,
由(1)知,平面,平面,.
,,平面.
由(1)知,平面,平面,,
,
,,
平面,,平面,
平面,,
由于四邊形為直角梯形,且,,
,,則.
由等面積法可得.
因此,點到平面的距離為.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,四邊形ABCD菱形,,平面平面 ABCD, .E,F 分別是線段 SC,AB 上的一點, .
(1)求證:平面SAD;
(2)求平面DEF與平面SBC所成銳二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在邊長為的正方形中,線段BC的端點分別在邊、上滑動,且,現將,分別沿AB,AC折起使點重合,重合后記為點,得到三被錐.現有以下結論:
①平面;
②當分別為、的中點時,三棱錐的外接球的表面積為;
③的取值范圍為;
④三棱錐體積的最大值為.
則正確的結論的個數為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】金石文化,是中國悠久文化之一.“金”是指“銅”,“石”是指“石頭”,“金石文化”是指在銅器或石頭上刻有文字的器件.在一千多年前,有一種凸多面體工藝品,是金石文化的代表作,此工藝品的三視圖是三個全等的正八邊形(如圖),若一個三視圖(即一個正八邊形)的面積是,則該工藝品共有______個面,表面積是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為,若直線l經過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有下列四個結論,其中所有正確結論的編號是___________.
①若,則的最大值為;
②若,,是等差數列的前項,則;
③“”的一個必要不充分條件是“”;
④“,”的否定為“,”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(1)若,,,求方程在區(qū)間內的解集;
(2)若點是直線上的動點.當時,設函數的值域為集合,不等式的解集為集合.若恒成立,求實數的最大值;
(3)若函數滿足“圖像關于點對稱,且在處取得最小值”,求、和滿足的充要條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】司機在開機動車時使用手機是違法行為,會存在嚴重的安全隱患,危及自己和他人的生命. 為了研究司機開車時使用手機的情況,交警部門調查了名機動車司機,得到以下統(tǒng)計:在名男性司機中,開車時使用手機的有人,開車時不使用手機的有人;在名女性司機中,開車時使用手機的有人,開車時不使用手機的有人.
(1)完成下面的列聯表,并判斷是否有的把握認為開車時使用手機與司機的性別有關;
開車時使用手機 | 開車時不使用手機 | 合計 | |
男性司機人數 | |||
女性司機人數 | |||
合計 |
(2)以上述的樣本數據來估計總體,現交警部門從道路上行駛的大量機動車中隨機抽檢3輛,記這3輛車中司機為男性且開車時使用手機的車輛數為,若每次抽檢的結果都相互獨立,求的分布列和數學期望.
參考公式與數據:
參考數據:
參考公式
span>,其中.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com