5.求與圓(x-2)2+y2=2相切且在x軸,y軸上截距相等的直線方程.

分析 直線在x軸,y軸上截距相等,即直線過原點(diǎn),或直線斜率為-1,進(jìn)而得到答案.

解答 解:若直線在x軸,y軸上截距相等,
則直線過原點(diǎn),或直線斜率為-1,
當(dāng)直線過原點(diǎn)時(shí),設(shè)直線方程為:y=kx,即kx-y=0,
則由直線與圓(x-2)2+y2=2相切得:$\frac{\left|2k\right|}{\sqrt{{k}^{2}+1}}=\sqrt{2}$,
解得:k=±1,
即直線方程為:x-y=0,或x+y=0;
當(dāng)直線斜率為1時(shí),設(shè)直線方程為:x+y+C=0;
則由直線與圓(x-2)2+y2=2相切得:$\frac{|2+C|}{\sqrt{2}}=\sqrt{2}$,
解得:C=0,或C=-4,
即直線方程為:x+y-4=0,或x+y=0;
綜上可得直線方程為:x-y=0,x+y-4=0,或x+y=0;

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是直線與圓的位置關(guān)系,直線方程,點(diǎn)到直線的距離公式,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(理)已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,且過點(diǎn)$(2,\sqrt{2})$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過原點(diǎn)O,若${K_{AC}}•{K_{BD}}=-\frac{b^2}{a^2}$.
(i) 求$\overrightarrow{OA}•\overrightarrow{OB}$的最值;
(ii) 求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{-{x}^{2}+2x+3}$,則函數(shù)f(3x-2)的定義域?yàn)椋ā 。?table class="qanwser">A.[$\frac{1}{3}$,$\frac{5}{3}$]B.[-1,$\frac{5}{3}$]C.[-3,1]D.[$\frac{1}{3}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列正確的是( 。
A.若a,b∈R,則$\frac{a}+\frac{a}≥2$B.若x<0,則x+$\frac{4}{x}$≥-2$\sqrt{x•\frac{4}{x}}$=-4
C.若ab≠0,則$\frac{b^2}{a}+\frac{a^2}≥a+b$D.若x<0,則2x+2-x>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知tanα,tanβ是方程x2-bx+1-b=0的兩根,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),求α+β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求適合下列條件的雙曲線標(biāo)準(zhǔn)方程.
(1)a=12,b=5;
(2)焦點(diǎn)在y軸上,焦距是8,漸近線方程為y=$±\frac{1}{3}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知α∈(0,π),sinα+cosα=-$\frac{1}{5}$,則tanα=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某企業(yè)在科研部門的支持下,啟動(dòng)減緩氣候變化的技術(shù)攻關(guān),將采用新工藝,把細(xì)顆粒物(PM2.5)轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該企業(yè)處理成本P(x)(億元)與處理量x(萬噸)之間的函數(shù)關(guān)系可近似地表示為P(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{x}{4},0≤x≤10}\\{x+\frac{4}{x}-\frac{33}{20},x>10}\end{array}\right.$另外技術(shù)人員培訓(xùn)費(fèi)為2500萬元,試驗(yàn)區(qū)基建費(fèi)為1億元.
(1)當(dāng)0≤x≤10時(shí),若計(jì)劃在A國(guó)投入的總成本不超過5億元,則該工藝處理量x的取值范圍是多少?
(2)該企業(yè)處理量為多少萬噸時(shí),才能使每萬噸的平均成本最低,最低是多少億元?
附:投入總成本=處理成本+技術(shù)人員培訓(xùn)費(fèi)+試驗(yàn)區(qū)基建費(fèi),平均成本=$\frac{投入總成本}{處理量}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C過兩點(diǎn)M(-3,3),N(1,-5),且圓心在直線2x-y-2=0上
(1)求圓的方程;
(2)直線l過點(diǎn)(-2,5)且與圓C有兩個(gè)不同的交點(diǎn)A、B,若直線l的斜率k大于0,求k的取值范圍;
(3)在(2)的條件下,是否存在直線l使得弦AB的垂直平分線過點(diǎn)P(3,-1),若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案