【題目】某學(xué)校舉行了一次安全教育知識競賽,競賽的原始成績采用百分制,已知高三學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標(biāo)準(zhǔn)見表.
原始成績 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照的分組作出頻率分布直方圖如圖所示,其中等級為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若該校高三學(xué)生共1000人,求競賽等級在良好及良好以上的人數(shù);
(3)在選取的樣本中,從原始成績在80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,求抽取的2名學(xué)生中優(yōu)秀等級的學(xué)生恰好有1人的概率.
【答案】(1) ;(2)720;(3) .
【解析】試題分析:
(1)由題意可知,樣本容量,利用頻率分布直方圖小長方形面積之和為1列方程計算可得.
(2)由題意可知樣本中等級在良好以上的頻率為0.72,用樣本估計總體可得競賽等級在良好以上的人數(shù)為.
(3)由題意可知優(yōu)秀等級的學(xué)生有3人,設(shè)為,另外5名學(xué)生為.據(jù)此列出所有隨機(jī)抽取2名學(xué)生的事件,由古典概型計算公式可得抽取的2名學(xué)生中優(yōu)秀等級的學(xué)生恰好有1人的概率為.
試題解析:
(1)由題意可知,樣本容量,
,
∴.
(2)樣本中等級在良好以上的頻率為0.72,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,則該校高三學(xué)生競賽等級在良好以上的概率為0.72,該校高三學(xué)生共1000人,所以競賽等級在良好以上的人數(shù)為.
(3)原始成績在80分以上的學(xué)生有人,優(yōu)秀等級的學(xué)生有3人,設(shè)為,另外5名學(xué)生為.
從原始成績在80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生的基本事件有: , , , , , , 共28個,
抽取的2名學(xué)生中優(yōu)秀等級的學(xué)生恰好有1人的基本事件有: , , 共15個,
每個基本事件被抽到的可能性是均等的,所以抽取的2名學(xué)生中優(yōu)秀等級的學(xué)生恰好有1人的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與的圖象關(guān)于對稱,且,函數(shù)的定義域?yàn)?/span>.
(1)求的值;
(2)若函數(shù)在上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)的最大值為2,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取次.記錄如下:
甲: , , , , , , ,
乙: , , , , , , ,
()用莖葉圖表示這兩組數(shù)據(jù).
()現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為派哪位學(xué)生參加合適?請說明理由.
()若將頻率視為概率,對甲同學(xué)在今后的三次數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這次成績中高于分的次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市甲水廠每天生產(chǎn)萬噸的生活用水,其每天固定生產(chǎn)成本為萬元,居民用水的稅費(fèi)價格為每噸元,該市居民每天用水需求量是在(單位:萬噸)內(nèi)的隨機(jī)數(shù),經(jīng)市場調(diào)查,該市每天用水需求量的頻率分布直方圖如圖所示,設(shè)(單位:萬噸, )表示該市一天用水需求量(單位:萬元)表示甲水廠一天銷售生活用水的利潤(利潤=稅費(fèi)收入-固定生產(chǎn)成本),注:當(dāng)該市用水需求量超過萬噸時,超過的部分居民可以用其他水廠生產(chǎn)的水,甲水廠只收成本廠供應(yīng)的稅費(fèi),該市每天用水需求量的概率用頻率估計.
(1)求的值,并直接寫出表達(dá)式;
(2)求甲水廠每天的利潤不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為,以為圓心且與拋物線準(zhǔn)線相切的圓恰好過原點(diǎn).點(diǎn)是與軸的交點(diǎn), 兩點(diǎn)在拋物線上且直線過點(diǎn),過點(diǎn)及的直線交拋物線于點(diǎn).
(1)求拋物線的方程;
(2)求證:直線過一定點(diǎn),并求出該點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個關(guān)于圓錐曲線的命題:
①設(shè)A,B是兩個定點(diǎn),k為非零常數(shù),若|PA|-|PB|=k,則P的軌跡是雙曲線;
②過定圓C上一定點(diǎn)A作圓的弦AB,O為原點(diǎn),若.則動點(diǎn)P的軌跡是橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④雙曲線與橢圓有相同的焦點(diǎn).
其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的極值;
(2)是否存在實(shí)數(shù),使得當(dāng)時,函數(shù)的最大值為?若存在,取實(shí)數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是直角梯形的四棱錐S-ABCD中,面.
(1)求四棱錐S-ABCD的體積;
(2)求證:面
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠制作仿古的桌子和椅子,需要木工和漆工兩道工序.已知生產(chǎn)一把椅子需要木工4個工作時,漆工2個工作時;生產(chǎn)一張桌子需要木工8個工作時,漆工1個工作時.生產(chǎn)一把椅子的利潤為1500元,生產(chǎn)一張桌子的利潤為2000元.該廠每個月木工最多完成8000個工作時、漆工最多完成1300個工作時.根據(jù)以上條件,該廠安排生產(chǎn)每個月所能獲得的最大利潤是__________元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com