已知為雙曲線C:的左、右焦點,點上,,則P軸的距離為 (   )

A.             B.            C.           D.

 

【答案】

B

【解析】

試題分析:不妨設(shè)點在雙曲線的右支上,所以,因為,所以在中利用余弦定理可知,再根據(jù)三角形的面積公式可知,即P軸的距離為.

考點:本小題主要考查雙曲線的性質(zhì).

點評:解決本小題的關(guān)鍵是在中利用余弦定理進行恰當(dāng)轉(zhuǎn)化.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,點A、B分別為雙曲線C實軸的左端點和虛軸的上端點,點F1、F2分別為雙曲線C的左、右焦點,點M、N是雙曲線C的右支上不同兩點,點Q為線段MN的中點.已知在雙曲線C上存在一點P,使得
PA
+
PB
+
PF2
=(
3
-3)
OP

(Ⅰ)求雙曲線C的離心率;
(Ⅱ)設(shè)a為正常數(shù),若點Q在直線y=2x上,求直線MN在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標(biāo)原點,且兩條漸近線與以點A(0,
2
)
為圓心,1為半徑為圓相切,又知C的一個焦點與A關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟寧市高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知為雙曲線C: 的左、右焦點,點P在C上,若=        .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市順義區(qū)高三尖子生綜合素質(zhì)展示數(shù)學(xué) 題型:填空題

已知為雙曲線C: 的左、右焦點,點P在C上,若=       

 

查看答案和解析>>

同步練習(xí)冊答案