3.把函數(shù)y=(x-2)2+1的圖象向左平移1個單位,再向上平移1個單位后,所得圖象對應(yīng)的函數(shù)解析式是( 。
A.y=(x-3)2+2B.y=(x-3)2C.y=(x-1)2+2D.y=(x-1)2

分析 直接利用圖象的變換規(guī)律,即可求出圖象對應(yīng)的函數(shù)解析式.

解答 解:由題意,把函數(shù)y=f(x)的圖象向左平移1個單位,即把其中x換成x+1,
于是得y=(x-1)2+1,再向上平移1個單位,即得到y(tǒng)=(x-1)2+2,
故選C.

點評 本題考查函數(shù)的解析式,考查圖象變換,掌握圖象變換規(guī)律是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點P(1,-2),Q(-1,-1),O(0,0),點M(x,y)在不等式組$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x+y-5≤0}\\{y≤x+2}\end{array}\right.$所表示的平面區(qū)域內(nèi),則|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范圍是( 。
A.[$\frac{\sqrt{2}}{2}$,5]B.[$\frac{1}{2}$,5]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{5}$]D.[$\frac{1}{2}$,25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若將函數(shù)y=sin2x的圖象向右平移$\frac{π}{3}$個單位長度,則平移后圖象的函數(shù)解析式為yy=sin(2x-$\frac{2π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進行實驗.
利用隨機數(shù)表抽取種子時,先將850顆種子按001,002,…,850進行編號,如果從隨機數(shù)表第8行第7列的數(shù)7開始向右讀,請你寫出第二個被檢測的種子的編號567.(下面摘取了隨機數(shù)表第7行至第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 55 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若a是集合{1,2,3,4,5,6,7}中任意選取的一個元素,則圓C:x2+(y-2)2=1與圓O:x2+y2=a2內(nèi)含的概率為$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}-x-4,x≤-1\\{x^2}-5,x>-1\end{array}$,則滿足f(a)-11=0的實數(shù)a的值為( 。
A.-15或-4B.-4或4C.-15或4D.-15或-4或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù) f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=-$\frac{a}{x}$.若至少存在一個x0∈[1,4],使得 f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合$A=\{y|y={log_2}x,x>\frac{1}{2}\},B=\{x|x≥2\}$,則下列結(jié)論正確的是( 。
A.-3∈A∩BB.3∉B∪CC.A∪B=BD.A∩B=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x+1≥0}\\{x-y+1≤0}\\{x+y-2≤0}\end{array}\right.$,則z=y-2x的最小值為(  )
A.5B.$\frac{1}{2}$C.2D.1

查看答案和解析>>

同步練習(xí)冊答案