【題目】已知橢圓的離心率為,M是橢圓C的上頂點,,F(xiàn)2是橢圓C的焦點,的周長是6.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過動點P(1,t)作直線交橢圓C于A,B兩點,且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點,并求此定點的坐標.
【答案】(Ⅰ);(Ⅱ)詳見解析.
【解析】
(Ⅰ)由題得到關于a,b,c的方程組,解方程組即得橢圓C的標準方程;(Ⅱ)當直線AB斜率存在,設AB的直線方程為,進一步求出直線的方程為,
所以直線恒過定點.當直線斜率不存在時,直線的方程為,此時直線為軸,也過.綜上所述直線恒過點.
解:(Ⅰ)由于是橢圓的上頂點,由題意得,
又橢圓離心率為,即,
解得,,
又,
所以橢圓的標準方程。
(Ⅱ)當直線AB斜率存在,設AB的直線方程為,
聯(lián)立,得
,
由題意,,
設,
則,
因為,所以是的中點.
即,得,
①
又,l的斜率為,
直線的方程為 ②
把①代入②可得:
所以直線恒過定點.
當直線斜率不存在時,直線的方程為,
此時直線為軸,也過.
綜上所述直線恒過點.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和為,且滿足,數(shù)列中,,對任意正整數(shù),.
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比q的值,若不存在,請說明理由;
(3)求數(shù)列前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓()的左、右焦點為,右頂點為,上頂點為.已知.
(1)求橢圓的離心率;
(2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經過點,經過原點的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓 的離心率為,且過點.
(I)求橢圓的標準方程;
(II)設點,是橢圓上異于頂點的任意兩點,直線,的斜率分別為,且.
①求的值;
②設點關于軸的對稱點為,試求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為,對一切,點都在函數(shù)的圖像上.
(1)證明:當時,;
(2)求數(shù)列的通項公式;
(3)設為數(shù)列的前n項的積,若不等式對一切成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系 xOy 中,已知橢圓 C:=1(a>b>0)的離心率為,且過點,點P在第四象限, A為左頂點, B為上頂點, PA交y軸于點C,PB交x軸于點D.
(1) 求橢圓 C 的標準方程;
(2) 求 △PCD 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等腰Rt△ABC中,∠BAC=90°,腰長為2,D、E分別是邊AB、BC的中點,將△BDE沿DE翻折,得到四棱錐B﹣ADEC,且F為棱BC中點,BA.
(1)求證:EF⊥平面BAC;
(2)在線段AD上是否存在一點Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若直線l:x+y=0與圓C交于A,B兩點,求弦AB的長;
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高鐵是一種快捷的交通工具,為我們的出行提供了極大的方便。某高鐵換乘站設有編號為①,②,③,④,⑤的五個安全出口,若同時開放其中的兩個安全出口,疏散名乘客所需的時間如下:
安全出口編號 | ①② | ②③ | ③④ | ④⑤ | ①⑤ |
疏散乘客時間(s) | 120 | 220 | 160 | 140 | 200 |
則疏散乘客最快的一個安全出口的編號是( )
A. ①B. ②C. ④D. ⑤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com