已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間,如果函數(shù)僅有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),試比較與1的大小.
(1)或
(2)? ?當(dāng)
?
【解析】
試題分析:(Ⅰ)當(dāng)時(shí),,定義域是,
, 令,得或.
當(dāng)或時(shí),,當(dāng)時(shí),,
函數(shù)在、上單調(diào)遞增,在上單調(diào)遞減.
的極大值是,極小值是.
當(dāng)時(shí),;當(dāng)時(shí),,
當(dāng)僅有一個(gè)零點(diǎn)時(shí),的取值范圍是或
(2)當(dāng)=2時(shí),定義域?yàn)椋?,+).
令h(x)=-1=-1,
,
?
?當(dāng)
?
考點(diǎn):函數(shù)的零點(diǎn) 利用導(dǎo)數(shù)研究函數(shù)的極值
點(diǎn)評(píng):本題主要考查函數(shù)導(dǎo)數(shù)運(yùn)算法則、利用導(dǎo)數(shù)求函數(shù)的極值、證明不等式等基礎(chǔ)知識(shí),考查分類討論思想和數(shù)形結(jié)合思想,考查考生的計(jì)算能力及分析問題、解決問題的能力和創(chuàng)新意識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),其中
(1) 當(dāng)滿足什么條件時(shí),取得極值?
(2) 已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(1)當(dāng)a=3時(shí),求f(x)的零點(diǎn);
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),.
(1)當(dāng)為何值時(shí),取得最大值,并求出其最大值;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)當(dāng)且時(shí),證明:對(duì),;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時(shí),求函數(shù) 的最小值;
(2)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com