【題目】【2017安徽淮北二模】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中, 以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系, 圓的極坐標(biāo)方程為,直線的參數(shù)方程為 (t為參數(shù)), 直線和圓交于兩點(diǎn)。
(Ⅰ)求圓心的極坐標(biāo);
(Ⅱ)直線與軸的交點(diǎn)為,求.
【答案】(1)(2)8
【解析】試題分析:(1)利用將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,根據(jù)代入消元法將直線的參數(shù)方程化為普通方程;(2)因?yàn)橹本恰好經(jīng)過圓C的圓心,所以
試題解析:(1)由,得,得,故圓的普通方程為,所以圓心坐標(biāo)為,圓心的極坐標(biāo)為.
(2)把代入得,
所以點(diǎn)A、B對(duì)應(yīng)的參數(shù)分別為
令得點(diǎn)對(duì)應(yīng)的參數(shù)為
所以
法二:把化為普通方程得
令得點(diǎn)P坐標(biāo)為,又因?yàn)橹本恰好經(jīng)過圓C的圓心,
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017鎮(zhèn)江一模】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,
斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位
置分別記為點(diǎn).
(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端
時(shí)即停,乙比甲遲分鐘出發(fā),當(dāng)乙出發(fā)分鐘后,求此時(shí)甲乙兩人之間的距離;
(2)設(shè),乙丙之間的距離是甲乙之間距離的倍,且,請(qǐng)將甲
乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),向量 =(1,7), =(5,1), =(2,1),點(diǎn)M為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng) 取最小值時(shí),求向量 的坐標(biāo);
(2)在點(diǎn)M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過橢圓M: (a>b>0)右焦點(diǎn)的直線x+y﹣ =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為 .
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017江西南昌十所重點(diǎn)二!選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2: .
(Ⅰ)求曲線C1和C2的直角坐標(biāo)方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點(diǎn)?如果有,說明公共點(diǎn)的個(gè)數(shù);如果沒有,請(qǐng)說明理由;
(Ⅲ)設(shè)是曲線C1上任意一點(diǎn),請(qǐng)直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3an , 求證:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結(jié)論正確的是
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)=lnx+ax2+(2a+1)x.
(1)討論的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com