【題目】【2017安徽淮北二模】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中, 為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系, 的極坐標(biāo)方程為,直線的參數(shù)方程為 (t為參數(shù)), 直線和圓交于兩點(diǎn)。

(Ⅰ)求圓心的極坐標(biāo);

(Ⅱ)直線軸的交點(diǎn)為,求

【答案】(1)(2)8

【解析】試題分析:(1)利用將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,根據(jù)代入消元法將直線的參數(shù)方程化為普通方程;(2)因?yàn)橹本恰好經(jīng)過圓C的圓心,所以

試題解析:(1)由,得,得,故圓的普通方程為,所以圓心坐標(biāo)為,圓心的極坐標(biāo)為.

(2)把代入

所以點(diǎn)A、B對(duì)應(yīng)的參數(shù)分別為

得點(diǎn)對(duì)應(yīng)的參數(shù)為

所以

法二:把化為普通方程得

得點(diǎn)P坐標(biāo)為,又因?yàn)橹本恰好經(jīng)過圓C的圓心,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017鎮(zhèn)江一模】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,

斜邊現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位

置分別記為點(diǎn)

(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

時(shí)即停,乙比甲遲分鐘出發(fā),當(dāng)乙出發(fā)分鐘后,求此時(shí)甲乙兩人之間的距離;

(2)設(shè),乙丙之間的距離是甲乙之間距離的倍,且,請(qǐng)將甲

乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面坐標(biāo)系內(nèi),O為坐標(biāo)原點(diǎn),向量 =(1,7), =(5,1), =(2,1),點(diǎn)M為直線OP上的一個(gè)動(dòng)點(diǎn).
(1)當(dāng) 取最小值時(shí),求向量 的坐標(biāo);
(2)在點(diǎn)M滿足(I)的條件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過橢圓M: (a>b>0)右焦點(diǎn)的直線x+y﹣ =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017江西南昌十所重點(diǎn)二!選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標(biāo)方程,并分別指出其曲線類型;

(Ⅱ)試判斷:曲線C1C2是否有公共點(diǎn)?如果有,說明公共點(diǎn)的個(gè)數(shù);如果沒有,請(qǐng)說明理由;

(Ⅲ)設(shè)是曲線C1上任意一點(diǎn),請(qǐng)直接寫出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3an , 求證:數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

同步練習(xí)冊(cè)答案