已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M(
3
3
,0)
的直線l與曲線E交與點A、B,且
MB
=-2
MA

(1)若點B的坐標(biāo)為(0,2),求曲線E的方程.
(2)若a=b=1,求直線AB的方程.
(1)設(shè)A(x0,y0),因為B(0,2),M(
3
3
,0)
MB
=(-
3
3
,2),
MA
=(x0-
3
3
,y0).
MB
=-2
MA

∴(-
3
3
,2)=-2(x0-
3
3
,y0
∴x0=
3
2
,y0=-1,即A(
3
2
,-1)
∵A,B都在曲線E上,所以
a•0+b2 2=1
a•(
3
2
) 2+b•(-1) 2=1

解得a=1,b=
1
4

∴曲線E的方程為x2+
y2
4
=1
(2)設(shè)AB的中點為T,由條件得|TM|=|TA|-|MA|=
1
6
|AB|,|OM|=
3
3

根據(jù)Rt△OTA和Rt△OTM得,
|TM|2+|OT|2=
1
3
|TA|2+|OT|2=1

1
36
|AB|2+|OT|2=
1
3
1
4
|AB|2+|OT|2=1
,解得|AB|=
3
,|OT|=
1
2

∴在Rt△OTM中,tan∠OMT=
3
,
∴直線AB的斜率為
3
或-
3

∴直線AB的方程為y=
3
x-1或y=-
3
x+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M(
3
3
,0)
的直線l與曲線E交與點A、B,且
MB
=-2
MA

(1)若點B的坐標(biāo)為(0,2),求曲線E的方程.
(2)若a=b=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)

已知曲線Eax2by2=1(a>0,b>0),經(jīng)過點M(,0)的直線l與曲線E

于點AB,且→=-2→.

(1)若點B的坐標(biāo)為(0,2),求曲線E的方程;

(2)若ab=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線Eax2by2=1(a>0,b>0),經(jīng)過點M,0)的直線l與曲線E

于點A、B,且=-2

(1)若點B的坐標(biāo)為(0,2),求曲線E的方程;

(2)若ab=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省高考數(shù)學(xué)仿真押題試卷(10)(解析版) 題型:解答題

已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M的直線l與曲線E交與點A、B,且
(1)若點B的坐標(biāo)為(0,2),求曲線E的方程.
(2)若a=b=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)小題限時訓(xùn)練試卷(09)(解析版) 題型:解答題

已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過點M的直線l與曲線E交與點A、B,且
(1)若點B的坐標(biāo)為(0,2),求曲線E的方程.
(2)若a=b=1,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊答案