【題目】設(shè)函數(shù)其中P,M是非空數(shù)集.記f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(Ⅰ)若P=[0,3],M=(﹣∞,﹣1),求f(P)∪f(M);
(Ⅱ)若P∩M=,且f(x)是定義在R上的增函數(shù),求集合P,M;
(Ⅲ)判斷命題“若P∪M≠R,則f(P)∪f(M)≠R”的真假,并加以證明.
【答案】(Ⅰ)[0,+∞);(Ⅱ)P=(﹣∞,0)∪(0,+∞),M={0};(Ⅲ)真命題,證明見(jiàn)解析
【解析】
(Ⅰ)求出f (P)=[0,3],f (M)= (1,+∞),由此能過(guò)求出f (P)∪f (M).
(Ⅱ)由f (x)是定義在R上的增函數(shù),且f (0)=0,得到當(dāng)x<0時(shí),f (x)<0, (﹣∞,0)P. 同理可證 (0,+∞)P. 由此能求出P,M.
(Ⅲ)假設(shè)存在非空數(shù)集P,M,且P∪M≠R,但f (P)∪f (M)=R.證明0∈P∪M.推導(dǎo)出f (﹣x0)=﹣x0,且f (﹣x0)=﹣ (﹣x0)=x0,由此能證明命題“若P∪M≠R,則f (P)∪f (M)≠R”是真命題.
(Ⅰ)因?yàn)?/span>P=[0,3],M=(﹣∞,﹣1),
所以f(P)=[0,3],f(M)=(1,+∞),
所以f(P)∪f (M)=[0,+∞).
(Ⅱ)因?yàn)?/span>f (x)是定義在R上的增函數(shù),且f (0)=0,
所以當(dāng)x<0時(shí),f (x)<0,
所以(﹣∞,0)P. 同理可證(0,+∞)P.
因?yàn)?/span>P∩M=,
所以P=(﹣∞,0)∪(0,+∞),M={0}.
(Ⅲ)該命題為真命題.證明如下:
假設(shè)存在非空數(shù)集P,M,且P∪M≠R,但f (P)∪f (M)=R.
首先證明0∈P∪M.否則,若0P∪M,則0P,且0M,
則0f (P),且0f (M),
即0f (P)∪f (M),這與f (P)∪f (M)=R矛盾.
若x0P∪M,且x0≠0,則x0P,且x0M,
所以x0f (P),且﹣x0f (M).
因?yàn)?/span>f (P)∪f (M)=R,
所以﹣x0∈f (P),且x0∈f (M).
所以﹣x0∈P,且﹣x0∈M.
所以f (-x0)=﹣x0,且f (-x0)=﹣(﹣x0)=x0,
根據(jù)函數(shù)的定義,必有﹣x0=x0,即x0=0,這與x0≠0矛盾.
綜上,該命題為真命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中, 和是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),都在處取得最小值.
(1)求的值;
(2)設(shè)函數(shù),的極值點(diǎn)之和落在區(qū)間,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的序號(hào)是__________.
①“若,則”的否命題;
②“,函數(shù)在定義域內(nèi)單調(diào)遞增”的否定;
③“”是“”的必要條件;
④函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()經(jīng)過(guò)點(diǎn),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,若,證明:直線與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲盒子中有個(gè)紅球,個(gè)藍(lán)球,乙盒子中有個(gè)紅球,個(gè)藍(lán)球,同時(shí)從甲乙兩個(gè)盒子中取出個(gè)球進(jìn)行交換,(a)交換后,從甲盒子中取1個(gè)球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個(gè)數(shù)記為.則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,焦點(diǎn)在軸上的橢圓與焦點(diǎn)在軸上的橢圓都過(guò)點(diǎn),中心都在坐標(biāo)原點(diǎn),且橢圓與的離心率均為.
(Ⅰ)求橢圓與橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M的互相垂直的兩直線分別與,交于點(diǎn)A,B(點(diǎn)A、B不同于點(diǎn)M),當(dāng)的面積取最大值時(shí),求兩直線MA,MB斜率的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnxx2﹣ax+1.
(1)設(shè)g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,求證:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com