(2013•崇明縣二模)設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量
a
∈M,都有λ
a
M,則稱M為“點(diǎn)射域”,在此基礎(chǔ)上給出下列四個(gè)向量集合:①{(x,y)|y≥x2};②{(x,y)|
x-y≥0
x+y≤0
};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合為“點(diǎn)射域”的序號(hào)是
分析:根據(jù)題中“點(diǎn)射域”的定義對(duì)各個(gè)選項(xiàng)依次加以判別,可得①③④都存在反例,說(shuō)明它們不是“點(diǎn)射域”,而②通過(guò)驗(yàn)證可知它符合“點(diǎn)射域”的定義,是正確選項(xiàng).
解答:解:根據(jù)“點(diǎn)射域”的定義,可得向量
a
∈M時(shí),與它共線的向量λ
a
M也成立,
對(duì)于①,M={(x,y)|y≥x2}表示終點(diǎn)在拋物線y≥x2上及其張口以內(nèi)的向量構(gòu)成的區(qū)域,
向量
a
=(1,1)∈M,但3
a
=(3,3)∉M,故它不是“點(diǎn)射域”;
對(duì)于②,M={(x,y)|
x-y≥0
x+y≤0
},可得任意正實(shí)數(shù)λ和向量
a
∈M,都有λ
a
M,故它是“點(diǎn)射域”;
對(duì)于③,M={(x,y)|x2+y2-2y≥0},表示終點(diǎn)在圓x2+y2-2y=0上及其外部的向量構(gòu)成的區(qū)域,
向量
a
=(0,2)∈M,但
1
2
a
=(0,1)∉M,故它不是“點(diǎn)射域”;
對(duì)于④,M={(x,y)|3x2+2y2-12<0},表示終點(diǎn)在橢圓
y2
6
+
x2
4
=1內(nèi)部的向量構(gòu)成的區(qū)域,
向量
a
=(1,1)∈M,但3
a
=(3,3)∉M,故它不是“點(diǎn)射域”.
綜上所述,滿足是“點(diǎn)射域”的區(qū)域只有②
故答案為:②
點(diǎn)評(píng):本題給出特殊定義,叫我們判斷符合題的選項(xiàng),著重考查集合與元素的關(guān)系和向量的性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,3,4,5.現(xiàn)從一批該日用品中抽取200件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率f的分布表如下:
X 1 2 3 4 5
f a 0.2 0.45 0.15 0.1
則在所抽取的200件日用品中,等級(jí)系數(shù)X=1的件數(shù)為
20
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿足bn=
1anan+1
,n∈N*,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式an和數(shù)列{bn}的前n項(xiàng)和Tn;
(2)若對(duì)任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍;
(3)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)設(shè)函數(shù) f(x)=
2x      (x≤0)
log2x (x>0)
,函數(shù)y=f[f(x)]-1的零點(diǎn)個(gè)數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)已知函數(shù)f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,則f(x)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)在直角△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點(diǎn),則 
AB
CD
=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案