已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,且短半軸b=1,F(xiàn)1,F(xiàn)2為其左右焦點(diǎn),P是橢圓上動(dòng)點(diǎn).
(Ⅰ)求橢圓方程.
(Ⅱ)當(dāng)∠F1PF2=60°時(shí),求△PF1F2面積.
(Ⅲ)求
PF1
PF2
取值范圍.
分析:(Ⅰ)利用橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,且短半軸b=1,建立方程組,求出幾何量,即可求橢圓方程.
(Ⅱ)當(dāng)∠F1PF2=60°時(shí),利用余弦定理,求出|PF1||PF2|,再利用三角形面積公式,可求△PF1F2面積.
(Ⅲ)用坐標(biāo)表示向量,再利用數(shù)量積公式,即可求
PF1
PF2
取值范圍.
解答:解:(Ⅰ)∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,且短半軸b=1,
c
a
=
3
2
b=1
a2=b2+c2
a=2
b=1
c=
3

∴橢圓方程為
x2
4
+y2=1
…(4分)
(Ⅱ)設(shè)|PF1|=m,|PF2|=n,
|F1F2|=2
3
,
∴在△PF1F2中,由余弦定理得:|F1F2|2=12=m2+n2-2mncos60°=m2+n2-mn=(m+n)2-3mn=16-3mn
mn=
4
3
…(7分)
S△PF1F2=
1
2
mnsin60°=
1
2
×
4
3
×
3
2
=
3
3
…(9分)
(Ⅲ)設(shè)P(x0,y0),則
x02
4
+y02=1
,即y02=1-
x02
4

F1(-
3
,0),F2(
3
,0)
,∴
PF1
=(-
3
-x0,-y0),
PF2
=(
3
-x0,-y0)

PF1
PF2
=x02-3+y02=x02-3+1-
x02
4
=
3x02
4
-2
…(11分)
∵-2≤x0≤2,∴0≤x02≤4⇒0≤
3x02
4
≤3⇒-2≤
3x02
4
-2≤1

PF1
PF2
∈[-2,1]
…(13分)
點(diǎn)評(píng):本題考查橢圓的方程,考查余弦定理的運(yùn)用,考查向量數(shù)量積公式,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長(zhǎng)軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長(zhǎng)軸的一個(gè)四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時(shí),求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過(guò)點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時(shí),求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過(guò)右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過(guò)M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過(guò)F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案