(2006•宣武區(qū)一模)已知函數(shù)f(x)的定義域為I,導(dǎo)數(shù)fn(x)滿足0<f(x)<2且fn(x)≠1,常數(shù)c1為方程f(x)-x=0的實數(shù)根,常數(shù)c2為方程f(x)-2x=0的實數(shù)根.
(1)若對任意[a,b]⊆I,存在x0∈(a,b),使等式f(b)-f(a)=(b-a)fn(x0)成立.求證:方程f(x)-x=0不存在異于c1的實數(shù)根;
(2)求證:當(dāng)x>c2時,總有f(x)<2x成立;
(3)對任意x1、x2,若滿足|x1-c1|<1,|x2-c1|<1,求證:|f(x1)-f(x2)|<4.
分析:(1)利用反證法.假設(shè)方程f(x)-x=0有異于c1的實根m,即f(m)=m,從而可得fn(x0)=1,這與fn(x)≠1矛盾;
(2)令h(x)=f(x)-2x,證明函數(shù)h(x)為減函數(shù),可證當(dāng)x>c2時,h(x)<0,從而可得結(jié)論;
(3)不妨設(shè)x1≤x2,根據(jù)fn(x)>0,可得f(x)為增函數(shù),即f(x1)≤f(x2),利用fn(x)<2,可得函數(shù)f(x)-2x為減函數(shù),利用絕對值不等式的性質(zhì),即可得證.
解答:證明:(1)假設(shè)方程f(x)-x=0有異于c1的實根m,即f(m)=m,
則有m-c1=f(m)-f(c1)=(m-c1)fn(x0)成立.
因為m≠c1,所以必有fn(x0)=1,這與fn(x)≠1矛盾,
因此方程f(x)-x=0不存在異于c1的實數(shù)根.…(4分)
(2)令h(x)=f(x)-2x,
∵h(yuǎn)n(x)=fn(x)-2<0,∴函數(shù)h(x)為減函數(shù).
又∵h(yuǎn)(c2)=f(c2)-2c2=0,∴當(dāng)x>c2時,h(x)<0,即f(x)<2x成立.…(8分)
(3)不妨設(shè)x1≤x2,∵fn(x)>0,∴f(x)為增函數(shù),即f(x1)≤f(x2).
又∵fn(x)<2,∴函數(shù)f(x)-2x為減函數(shù),即f(x1)-2x1≥f(x2)-2x2
∴0≤f(x2)-f(x1)≤2(x2-x1).
即|f(x2)-f(x1)|≤2|x2-x1|.
∵|x2-x1|=|x2-c1+c1-x1|≤|x2-c1|+|x1-c1|<2,
∴|f(x1)-f(x2)|<4.…(15分)
點評:本題考查函數(shù)與方程的綜合運用,考查反證法,考查函數(shù)的單調(diào)性,考查不等式的證明,綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)若把一個函數(shù)的圖象按
a
=(-
π
3
,-2)平移后得到函數(shù)y=cosx的圖象,則原圖象的函數(shù)解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)已知|
p
|=2
2
,|
q
|=3,
p
,
q
夾角為
π
4
,則以
a
=5
p
+2
q
,
b
=
p
-3
q
為鄰邊的平行四邊形的一條對角線長為
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)設(shè)全集U={1,3,5,7},集合M={1,a-5},M?U,?UM={5,7},則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)若指數(shù)函數(shù)y=f(x)的反函數(shù)的圖象經(jīng)過點(2,-1),則此指數(shù)函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•宣武區(qū)一模)二項式(
1
x
-x
x
)n
的展開式中含x4的項,則n的一個可能值是( 。

查看答案和解析>>

同步練習(xí)冊答案