方程sin
πx2
=logax(a>0且a≠1)恰有三個不相等的實數(shù)根,則a∈
 
分析:將方程的根轉(zhuǎn)化為函數(shù)圖象的交點,畫出兩個函數(shù)的圖象,結(jié)合圖象列出不等式,求出a的范圍.
解答:精英家教網(wǎng)解:作圖分析,y=sin
πx
2
,與y=logax( a>0,a≠1),
要使得原方程恰有三個不相等的實數(shù)根,
轉(zhuǎn)會為兩函數(shù)圖象有三個不同的交點.
當a∈(0,1)時,y=loga3>-1,y=loga7<-1,得:a∈(
1
7
,
1
3

當a∈(1,+∞)時,y=loga5<1,y=loga9>1,得:a∈(5,9)
故答案為:(
1
7
1
3
)∪(5,9)
點評:本題用到的基本方法是數(shù)形結(jié)合法和分類討論法,這兩種方法都是高考重點考查的方法,對高中學生來講,務必掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•開封一模)在平面直角坐標系xOy中,已知曲線C1:x2+y2=1,以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點的橫坐標、縱坐標分別伸長為原來的
3
、2倍后得到曲線C2,試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C1:x2+y2=1,將C1上的所有點的橫坐標、縱坐標分別伸長為原來的
3
、2倍后得到曲線C2.以平面直角坐標系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程;
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在伸縮變換
x=2x
y=
3
y
下圓x2+y2=1變?yōu)榍C.求曲線C的方程,并指出曲線的類型;當曲線C的動點M到直線L:
3
ρcosθ+2ρsinθ+5
6
=0
距離的最大值時,求點M的坐標.
(2)設(shè)函數(shù)f(x)=|x+1|+|x-a|(a>0).
①作出函數(shù)f(x)的圖象;
②若不等式f(x)≥5的解集為(-∞,-2]∪[3,+∞),求a值.

查看答案和解析>>

科目:高中數(shù)學 來源:吉林省長春市實驗中學2012屆高三模擬考試數(shù)學文科試題 題型:044

已知圓C的方程為x2+y2-2x=0,直線l的參數(shù)方程為(t為參數(shù))

(1)設(shè)y=sin,求圓C的參數(shù)方程;

(2)直線l與圓C交于A,B兩點,求線段AB的長.

查看答案和解析>>

同步練習冊答案