定義在R上的偶函數(shù)f(x),滿足,且在區(qū)間[-1,0]上為遞增,則( )
A.f(3)<f()<f(2)
B.f(2)<f(3)<f(
C.f(3)<f(2)<f(
D.f()<f(2)<f(3)
【答案】分析:由“f(x)是偶函數(shù)”和“”推出對稱性:函數(shù)的圖象關(guān)于x=1對稱,再結(jié)合“在區(qū)間[-1,0]上為遞增”知在“在區(qū)間[0,1]上為遞減”作出一個(gè)函數(shù)圖象,用數(shù)形結(jié)合法求解.
解答:解:∵f(x)是偶函數(shù),
∴f(-x)=f(x)
,
∴f(x)=-f(x+1)
∴f(x)=f(2-x)
∴函數(shù)的圖象關(guān)于x=1對稱
∵在區(qū)間[-1,0]上為遞增,
∴在區(qū)間[0,1]上為遞減,
我們可以作出一個(gè)函數(shù)圖象:
易得:f(3)<f()<f(2)
故選A
點(diǎn)評:本題主要考查函數(shù)的奇偶性,單調(diào)性,對稱性和周期性,還考查了作圖,用圖能力,體現(xiàn)了數(shù)形結(jié)合的思想和方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)是最小正周期為π的周期函數(shù),且當(dāng)x∈[0,
π
2
]
時(shí),f(x)=sinx,則f(
3
)
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、定義在R上的偶函數(shù)f(x),當(dāng)x≥0時(shí)有f(2+x)=f(x),且x∈[0,2)時(shí),f(x)=2x-1,則f(2010)+f(-2011)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(x),且f(x)在[-3,-2]上是減函數(shù),若α、β是銳角三角形中兩個(gè)不相等的銳角,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個(gè)命題:
①f(x)是周期函數(shù);
②f(x)的圖象關(guān)于x=l對稱;
③f(x)在[l,2l上是減函數(shù);
④f(2)=f(0),
其中正確命題的序號是
①②④
①②④
.(請把正確命題的序號全部寫出來)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知定義在R上的偶函數(shù)f(x).當(dāng)x≥0時(shí),f(x)=
-x+2x-1
且f(1)=0.
(Ⅰ)求函數(shù)f(x)的解析式并畫出函數(shù)的圖象;
(Ⅱ)寫出函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案