已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的值組成的集合;
(2)設關于的方程的兩個非零實根為、.試問:是否存在實數(shù),使得不等式對任意及 恒成立?若存在,求的取值范圍;若不存在,請說明理由.
(1)實數(shù)a的值組成的集合;
(2)存在實數(shù),使得不等式對任意及 恒成立.
【解析】
試題分析:(1)先求出函數(shù)的導數(shù),將條件在區(qū)間上為增函數(shù)這一條件轉化為在區(qū)間上恒成立,結合二次函數(shù)的圖象得到,從而解出實數(shù)的取值范圍;(2)先將方程轉化為一元二次方程,結合韋達定理得到與,然后利用
將用參數(shù)進行表示,進而得到不等式對任意
及恒成立,等價轉化為對任意恒成立,將不等式
轉化為以為自變量的一次函數(shù)不等式恒成立,只需考慮相應的端點值即可,從而解出參數(shù)的取值范圍.
試題解析:(1)因為在區(qū)間上是增函數(shù),
所以,在區(qū)間上恒成立,
,
所以,實數(shù)的值組成的集合;
(2)由 得,即,
因為方程,即的兩個非零實根為、,
、是方程兩個非零實根,于是,,
,
,,
設,,
則,
若對任意及恒成立,
則,解得或,
因此,存在實數(shù)或,使得不等式對任意及恒成立.
考點:1.函數(shù)的單調性;2.二次函數(shù)的零點分布;3.韋達定理;4.主次元交換
科目:高中數(shù)學 來源:2013屆浙江省寧波萬里國際學校高二下期中文科數(shù)學試卷(解析版) 題型:選擇題
已知在區(qū)間上是增函數(shù),則的取值范圍為( )
A、 B、
C、 D、不存在
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省09-10學年高二第二學期期末考試數(shù)學試題 題型:解答題
已知在區(qū)間上是增函數(shù).
(1)求實數(shù)的值組成的集合;
(2)設關于的方程的兩個非零實根為,試問:是否存在實數(shù),使得不等式對任意及恒成立?若存在,求的取值范圍;若不存在,請說明理
查看答案和解析>>
科目:高中數(shù)學 來源:2010年重慶一中高一上學期10月月考數(shù)學卷 題型:選擇題
已知在區(qū)間上是增函數(shù),則實數(shù)的范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com