在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則________.”

S△ABC2+S△ACD2+S△ADB2=S△BCD2
分析:從平面圖形到空間圖形的類比
解答:建立從平面圖形到空間圖形的類比,于是作出猜想:S△ABC2+S△ACD2+S△ADB2=S△BCD2
故答案為:S△ABC2+S△ACD2+S△ADB2=S△BCD2
點(diǎn)評(píng):本題主要考查學(xué)生的知識(shí)量和知識(shí)的遷移類比等基本能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB、AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出的正確結(jié)論是:“設(shè)三棱錐A—BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩相互垂直,則”_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:天津 題型:填空題

在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則______.”

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則    .”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《2.1 合情推理與演繹推理》2011年同步練習(xí)(解析版) 題型:填空題

在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則    .”

查看答案和解析>>

同步練習(xí)冊(cè)答案