數(shù)學(xué)公式
(1)求證:數(shù)學(xué)公式是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)學(xué)公式,Tn是數(shù)列{cn}的前n項(xiàng)的和,數(shù)學(xué)公式

證明(1)由題設(shè),
得:,所以數(shù)列{}是以為首項(xiàng),以2為公比的等比數(shù)列.
所以,,即;
(2)法一:∵
∴Tn=c1+c2+…+cn
=①.
②.
②-①得:

解法二:由,
而當(dāng)n≥3時(shí),,


=
分析:(1)把給出的遞推式變形得到新數(shù)列{}為等比數(shù)列,由等比數(shù)列的通項(xiàng)公式寫出,則an可求;
(2)把a(bǔ)n代入,寫出Tn后取n=n-1再寫一個(gè)式子,然后利用錯(cuò)位相減法,把得到的Tn的表達(dá)式的部分項(xiàng)去掉進(jìn)行放大,則結(jié)論得證.
點(diǎn)評(píng):本題考查了通過(guò)數(shù)列遞推式確定等比關(guān)系,考查了不等式的證明,恰當(dāng)?shù)姆趴s是證明該題的關(guān)鍵,該題屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:上海市盧灣區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文科試題 題型:044

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱之為數(shù)列{an}的一個(gè)子數(shù)列.

設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1、公差為d(d≠0)的無(wú)窮等差數(shù)列.

(1)若a1,a2,a5成等比數(shù)列,求其公比q.

(2)若a1=7d,從數(shù)列{an}中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

(3)若a1=1,從數(shù)列{an}中取出第1項(xiàng)、第m(m≥2)項(xiàng)(設(shè)am=t)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng).求證:當(dāng)t為大于1的正整數(shù)時(shí),該數(shù)列為{an}的無(wú)窮等比子數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

設(shè)數(shù)列{n}的首項(xiàng)1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4……)。

(Ⅰ)求證:數(shù)列{n}是等比數(shù)例;

(Ⅱ)設(shè)數(shù)列{n}的公比為ƒ (t),作數(shù)列{bn},使b1=1,bn=ƒ( )(n=2,3,4……),求數(shù)列{bn}的通項(xiàng)bn;

(Ⅲ)求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

設(shè)數(shù)列{n}的首項(xiàng)1=1,前n項(xiàng)和Sn滿足關(guān)系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4……)。

(Ⅰ)求證:數(shù)列{n}是等比數(shù)例;

(Ⅱ)設(shè)數(shù)列{n}的公比為ƒ (t),作數(shù)列{bn},使b1=1,bn=ƒ( )(n=2,3,4……),求數(shù)列{bn}的通項(xiàng)bn;

(Ⅲ)求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案