【題目】已知四棱錐,底面為矩形,,,中點,

1)求證:平面平面;

2)若,求二面角的余弦值.

【答案】1)見解析;(2

【解析】

(1)方法一:推出,結(jié)合可推出,,所以平面,進(jìn)而得證;方法二:推出,從而有,結(jié)合可推出,,所以平面,進(jìn)而得證;

(2)由勾股定理逆定理推出,結(jié)合可得平面,故以為原點,方向為軸正方向建立空間直角坐標(biāo)系,再利用向量法求出二面角的余弦值.

(1)方法一:

因為,,中點,

所以在,,

,,

所以,所以,

又因為,

所以,所以,

又因為,,

所以平面,

平面,所以平面平面.

方法二:

由題意可知:,,

,,,

所以,

所以,

又因為,

所以,所以,

又因為,,

所以平面,

平面,所以平面平面.

(2)因為,,,

所以,所以,

又因為,相交,

所以平面,

故以為原點,方向為軸正方向建立如圖所示的空間直角坐標(biāo)系,

,,,,

所以,,,

設(shè)平面的一個法向量為,

可得,

,,所以,

設(shè)平面的一個法向量為,

可得,

,,所以,

所以,

由題意可知二面角為銳二面角,

所以二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,都是等邊三角形.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線lxty+10t0)和拋物線Cy24x相交于不同兩點AB,設(shè)AB的中點為M,拋物線C的焦點為F,以MF為直徑的圓與直線l相交另一點為N,且滿足|MN||NF|,則直線l的方程為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為是參數(shù)),以原點為極點,軸的非負(fù)半軸

為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點在曲線上,曲線在點處的切線與直線垂直,求點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年以來,世界經(jīng)濟(jì)和貿(mào)易增長放緩,中美經(jīng)貿(mào)摩擦影響持續(xù)顯現(xiàn),我國對外貿(mào)易仍然表現(xiàn)出很強(qiáng)的韌性.今年以來,商務(wù)部會同各省市全面貫徹落實穩(wěn)外貿(mào)決策部署,出臺了一系列政策舉措,全力營造法治化、國際化、便利化的營商環(huán)境,不斷提高貿(mào)易便利化水平,外貿(mào)穩(wěn)規(guī)模、提質(zhì)量、轉(zhuǎn)動力取得階段性成效,進(jìn)出口保持穩(wěn)中提質(zhì)的發(fā)展勢頭,下圖是某省近五年進(jìn)出口情況統(tǒng)計圖,下列描述正確的是(

A.這五年,2015年出口額最少B.這五年,出口總額比進(jìn)口總額多

C.這五年,出口增速前四年逐年下降D.這五年,2019年進(jìn)口增速最快

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某果園今年的臍橙豐收了,果園準(zhǔn)備利用互聯(lián)網(wǎng)銷售.為了更好的銷售,現(xiàn)隨機(jī)摘下了個臍橙進(jìn)行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計質(zhì)量的數(shù)據(jù)作出頻率分布直方圖如下圖所示:

1)按分層抽樣的方法從質(zhì)量落在的臍橙中隨機(jī)抽取個,再從這個臍橙中隨機(jī)抽個,求這個臍橙質(zhì)量都不小于克的概率;

2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該果園的臍橙樹上大約還有個臍橙待出售,某電商提出兩種收購方案:甲:所有臍橙均以/千克收購;乙:低于克的臍橙以/個收購,高于或等于克的以/個收購.請通過計算為該果園選擇收益最好的方案.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進(jìn)行連續(xù)30天的試銷.定價為1000/.試銷結(jié)束后統(tǒng)計得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷期間每個零件的進(jìn)價為650/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;

2)試銷結(jié)束后,這款零件正式上市,每個定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550/件;小箱每箱有45件,批發(fā)價為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:

日銷售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;

(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,,,.

求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

將函數(shù)的圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個單位,得到函數(shù)的圖象,求函數(shù)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案