分析 (Ⅰ)當m=1時,求導(dǎo)數(shù),確定切線的斜率,起點坐標,即可求f(x)過點(1,f(1))的切線方程;
(Ⅱ)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,分類討論,利用曲線y=f(x)與直線y=10的圖象恰有三個交點,求實數(shù)m的取值范圍.
解答 解:(Ⅰ)當m=1時,f(x)=$\frac{2}{3}$x3-2x2+$\frac{3}{2}$x2-6x+1,f(1)=-$\frac{29}{6}$,
f′(x)=2x2-x-6,∴f′(1)=-5,
∴f(x)過點(1,f(1))的切線方程為y+$\frac{29}{6}$=-5(x-1),即y=-5x+$\frac{1}{6}$;
(Ⅱ)∵f(x)=$\frac{2m}{3}$x3-2m2x2+$\frac{3}{2}$x2-6mx+1,
∴f′(x)=(2mx+3)(x-2m),
m=0,f(x)與y=10的圖象有兩個交點,不合題意;
m>0,令f′(x)>0得函數(shù)單調(diào)增區(qū)間為(-∞,-$\frac{3}{2m}$),(2m,+∞),單調(diào)減區(qū)間為(-$\frac{3}{2m}$,2m),
∵曲線y=f(x)與直線y=10的圖象恰有三個交點,
∴$\left\{\begin{array}{l}{f(-\frac{3}{2m})>10}\\{f(2m)<10}\end{array}\right.$,∴0<m<$\frac{1}{2}$;
m>0,令f′(x)>0得函數(shù)單調(diào)增區(qū)間為(-∞,2m),(-$\frac{3}{2m}$,+∞),單調(diào)減區(qū)間為(2m,-$\frac{3}{2m}$),
∵曲線y=f(x)與直線y=10的圖象恰有三個交點,
∴$\left\{\begin{array}{l}{f(-\frac{3}{2m})>10}\\{f(2m)<10}\end{array}\right.$,∴$-\frac{1}{2}$<m<0;
綜上所述,-$\frac{1}{2}$<m<0或0<m<$\frac{1}{2}$.
點評 本題考查了導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)的綜合應(yīng)用,同時考查了分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $z=\frac{1}{5}x-y$ | B. | z=3x+y | C. | $z=-\frac{1}{5}x-y$ | D. | z=3x-y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016 | B. | 2017 | C. | log22016 | D. | log32016 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | [$\frac{1}{e}$,+∞) | C. | (-∞,$\frac{1}{e}$] | D. | [e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com