如下圖所示,a是海面上一條南北方向的海防警戒線(xiàn),在a上點(diǎn)A處有一個(gè)水聲監(jiān)測(cè)點(diǎn),另兩個(gè)監(jiān)測(cè)點(diǎn)B,C分別在A(yíng)的正東方20 km處和54 km處.某時(shí)刻,監(jiān)測(cè)點(diǎn)B收到發(fā)自靜止目標(biāo)P的一個(gè)聲波,8 s后監(jiān)測(cè)點(diǎn)A,20 s后監(jiān)測(cè)點(diǎn)C相繼收到這一信號(hào).在當(dāng)時(shí)氣象條件下,聲波在水中的傳播速度是1.5km/s.
(1)設(shè)A到P的距離為x km,用x表示B,C到P的距離,并求x的值;
(2)求靜止目標(biāo)P到海防警戒線(xiàn)a的距離.(結(jié)果精確到0.01 km)
解: (1)依題意,PA-PB=1.5×8=12(km),PC-PB=1.5×20=30(km).因此PB=(x -12)km,PC=(18+x)km.在△ PAB中,AB=20 km, .同理, .由于 ,即 ,解得 =.(2) 作PD⊥a,垂足為D.在Rt△PDA中,PD=PAcos∠APD=PAcos∠PAB .答:靜止目標(biāo) P到海防警戒線(xiàn)a的距離約為17.71 km. |
由實(shí)際出發(fā),構(gòu)建數(shù)學(xué)模型是解應(yīng)用題的基本思路.如果涉及三角形問(wèn)題,我們可以把它抽象為解三角形問(wèn)題,進(jìn)行解答,之后再還原成實(shí)際問(wèn)題,即 (1)PA ,PB,PC長(zhǎng)度之間的關(guān)系可以通過(guò)收到信號(hào)的先后時(shí)間建立起來(lái);(2) 作PD⊥a,垂足為D,要求PD的長(zhǎng),只需要求出PA的長(zhǎng)和cos∠APD,即cos∠PAB的值.由題意,PA-PB,PC-PB都是定值,因此,只需要分別在△PAB和△PAC中,求出cos∠PAB,cos∠PAC的表達(dá)式,建立方程即可. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
如下圖所示,
a是海面上一條南北方向的海防警戒線(xiàn),在a上點(diǎn)A處有一個(gè)水聲監(jiān)測(cè)點(diǎn),另兩個(gè)監(jiān)測(cè)點(diǎn)B,C分別在A的正東方20 km處和54 km處.某時(shí)刻,監(jiān)測(cè)點(diǎn)B收到發(fā)自靜止目標(biāo)P的一個(gè)聲波,8 s后監(jiān)測(cè)點(diǎn)A,20 s后監(jiān)測(cè)點(diǎn)C相繼收到這一信號(hào).在當(dāng)時(shí)氣象條件下,聲波在水中的傳播速度是1.5km/s.(1)
設(shè)A到P的距離為x km,用x表示B,C到P的距離,并求x的值;(2)
求靜止目標(biāo)P到海防警戒線(xiàn)a的距離.(結(jié)果精確到0.01 km)查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com